Презентация по физике на тему: «Равновесие тел, условия равновесия тел» - PowerPoint PPT Presentation. Презентация к уроку "Условия равновесия твердого тела. Виды равновесия" презентация к уроку по физике (10 класс) на тему Тело, имеющее точку опоры

Класс: 10

Презентация к уроку
































Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цели урока: Изучить состояние равновесия тел, познакомиться с различными видами равновесия; выяснить условия, при которых тело находится в равновесии.

Задачи урока:

  • Учебные: Изучить два условия равновесия, виды равновесия (устойчивое, неустойчивое, безразличное). Выяснить, при каких условиях тела более устойчивы.
  • Развивающие: Способствовать развитию познавательного интереса к физике. Развитие навыков сравнивать, обобщать, выделять главное, делать выводы.
  • Воспитательные: Воспитывать внимание, умения высказывать свою точку зрения и отстаивать её, развивать коммуникативные способности учащихся.

Тип урока: урок изучения нового материала с компьютерной поддержкой.

Оборудование:

  1. Диск «Работа и мощность» из «Электронных уроков и тестов.
  2. Таблица «Условия равновесия».
  3. Призма наклоняющаяся с отвесом.
  4. Геометрические тела: цилиндр, куб, конус и т.д.
  5. Компьютер, мултимедиапроектор, интерактивная доска или экран.
  6. Презентация.

Ход урока

Сегодня на уроке мы узнаем, почему подъёмный кран не падает, почему игрушка «Ванька-встанька» всегда возвращается в исходное состояние, почему Пизанская башня не падает?

I. Повторение и актуализация знаний.

  1. Сформулировать первый закон Ньютона. О каком состоянии говорится в законе?
  2. На какой вопрос отвечает второй закон Ньютона? Формула и формулировка.
  3. На какой вопрос отвечает третий закон Ньютона? Формула и формулировка.
  4. Что называется равнодействующей силой? Как она находится?
  5. Из диска «Движение и взаимодействие тел» выполнить задание № 9 «Равнодействующая сил с разными направлениями» (правило сложения векторов (2, 3 упражнения)).

II. Изучение нового материала.

1. Что называется равновесием?

Равновесие – это состояние покоя.

2. Условия равновесия. (слайд 2)

а) Когда тело находится в покое? Из какого закона это следует?

Первое условие равновесия: Тело находится в равновесии, если геометрическая сумма внешних сил, приложенных к телу, равна нулю. ∑F = 0

б) Пусть на доску действуют две равные силы, как показано на рисунке.

Будет ли она находиться в равновесии? (Нет, она будет поворачиваться)

В покое находится только центральная точка, а остальные движутся. Значит, чтобы тело находилось в равновесии, необходимо, чтобы сумма всех сил, действующих на каждый элемент равнялась 0.

Второе условие равновесия: Сумма моментов сил, действующих по часовой стрелке, должна равняться сумме моментов сил, действующих против часовой стрелки.

∑ M по часовой = ∑ M против часовой

Момент силы: M = F L

L – плечо силы – кратчайшее расстояние от точки опоры до линии действия силы.

3. Центр тяжести тела и его нахождение. (слайд 4)

Центр тяжести тела – это точка, через которую проходит равнодействующая всех параллельных сил тяжести, действующих на отдельные элементы тела (при любом положении тела в пространстве).

Найти центр тяжести следующих фигур:

4. Виды равновесия.

а) (слайды 5–8)



Вывод: Равновесие устойчиво, если при малом отклонении от положения равновесия есть сила, стремящаяся вернуть его в это положение.

Устойчиво то положение, в котором его потенциальная энергия минимальна. (слайд 9)

б) Устойчивость тел, находящихся на точке опоры или на линии опоры. (слайды 10–17)

Вывод: Для устойчивости тела, находящегося на одной точке или линии опоры необходимо, чтобы центр тяжести находился ниже точки (линии) опоры.

в) Устойчивость тел, находящихся на плоской поверхности.

(слайд 18)

1) Поверхность опоры – это не всегда поверхность, которая соприкасается с телом (а та, которая ограниченна линиями, соединяющими ножки стола, треноги)

2) Разбор слайда из «Электронных уроков и тестов», диск «Работа и мощность», урок «Виды равновесия».

Рисунок 1.

  1. Чем различаются табуретки? (Площадью опоры)
  2. Какая из них более устойчивая? (С большей площадью)
  3. Чем различаются табуретки? (Расположением центра тяжести)
  4. Какая из них наиболее устойчива? (Укоторой центр тяжести ниже)
  5. Почему? (Т.к. её можно отклонить на больший угол без опрокидывания)

3) Опыт с призмой отклоняющейся

  1. Поставим на доску призму с отвесом и начнём её постепенно поднимать за один край. Что мы видим?
  2. Пока линия отвеса пересекает поверхность, ограниченную опорой, равновесие сохраняется. Но как только вертикаль, проходящая через центр тяжести, начнёт выходить за границы поверхности опоры, этажерка опрокидывается.

Разбор слайдов 19–22 .

Выводы:

  1. Устойчиво то тело, у которого площадь опоры больше.
  2. Из двух тел одинаковой площади устойчиво то тело, у которого центр тяжести расположен ниже, т.к. его можно отклонить без опрокидывания на большой угол.

Разбор слайдов 23–25.

Какие корабли наиболее устойчивы? Почему? (У которых груз расположен в трюмах, а не на палубе)

Какие автомобили наиболее устойчивы? Почему? (Чтобы увеличить устойчивость машин на поворотах, полотно дороги наклоняют в сторону поворота.)

Выводы: Равновесие может быть устойчивым, неустойчивым, безразличным. Устойчивость тел тем больше, чем больше площадь опоры и ниже центр тяжести.

III. Применение знаний об устойчивости тел.

  1. Каким специальностям наиболее необходимы знания о равновесии тел?
  2. Проектировщикам и конструкторам различных сооружений (высотных зданий, мостов, телевизионных башен и т.д.)
  3. Цирковым артистам.
  4. Водителям и другим специалистам.

(слайды 28–30)

  1. Почему «Ванька-встанька» возвращается в положение равновесия при любом наклоне игрушки?
  2. Почему Пизанская башня стоит под наклоном и не падает?
  3. Каким образом сохраняют равновесие велосипедисты и мотоциклисты?

Выводы из урока:

  1. Существует три вида равновесия: устойчивое, неустойчивое, безразличное.
  2. Устойчиво положение тела, в котором его потенциальная энергия минимальна.
  3. Устойчивость тел на плоской поверхности тем больше, чем больше площадь опоры и ниже центр тяжести.

Домашнее задание : § 5456 (Г.Я. Мякишев, Б.Б. Буховцев, Н.Н. Сотский)

Использованные источники и литература:

  1. Г.Я. Мякишев, Б.Б. Буховцев, Н.Н.Сотский. Физика. 10 класс.
  2. Диафильм «Устойчивость» 1976 г. (отсканирован мною на плёночном сканере).
  3. Диск «Движение и взаимодействие тел» из «Электронных уроков и тестов».
  4. Диск «Работа и мощность» из «Электронных уроков и тестов».

Статика Раздел механики, изучающий условия, при которых тело находится в состоянии покоя Виды равновесия Виды равновесия устойчивое неустойчивое безразличное Виды равновесия устойчивое Виды равновесия устойчивое Виды равновесия устойчивое Виды равновесия устойчивое Виды равновесия устойчивое Виды равновесия устойчивое Виды равновесия неустойчивое Виды равновесия безразличное Виды равновесия устойчивое неустойчивое Eп= min Eп= max безразличное Eп= const Определите, к какому виду равновесия относится каждый случай. Нарисуйте вектор силы тяжести. Как можно увеличить устойчивость тела? Какое тело более устойчиво: массивное или легкое? Площадь опоры меньше или больше? У которого центр тяжести низко или высоко? В каком случае тело будет находится в покое? Условия равновесия ЛЕБЕДЬ, ЩУКА И РАК Когда в товарищах согласья нет, На лад их дело не пойдет, И выйдет из него не дело, только мука. Однажды Лебедь, Рак, да Щука Везти с поклажей воз взялись, И вместе трое все в него впряглись; Из кожи лезут вон, а возу все нет ходу! Поклажа бы для них казалась и легка: Да Лебедь рвется в облака, Рак пятится назад, а Щука тянет в воду. Кто виноват из них, кто прав,- судить не нам; Да только воз и ныне там. i Fi 0 Условия равновесия Достаточно ли этого условия? Fi 0 i Не всегда. F2 F1 F1 F 2 Необходимое и достаточное условие равновесия M i 0 i d1 d2 F1 F2 M 1 F1 d 1 M1 M F2 d 2 M 2 2 0 Необходимое и достаточное условие равновесия Для равновесия тела необходимо и достаточно, чтобы моменты всех сил относительно оси вращения были уравновешены: M i i 0 Будет ли самолет находится в равновесии? х Fпод Fтяж Какой брусок опрокинется раньше при увеличении угла наклона? Алгоритм определения опрокидывания тела Начало Определите примерно положение центра тяжести тела Нарисуйте вектор силы тяжести тела (вектор идет вертикально вниз из центра тяжести) Да Линия действия сил проходит через площадь опоры? Тело не опрокинется Нет Тело опрокинется Конец Какой брусок опрокинется раньше при увеличении угла наклона? Где должен находиться центр тяжести автомобиля, чтобы он не опрокинулся на повороте? Экспериментальная задача Экспериментальная задача Экспериментальная задача Задача на опрокидывание С В А α Fтяж β 1. Тело опрокинется в том случае, если вектор силы тяжести не проходит через площадь опоры. 2. Найдем угол наклона плоскости α, при котором начнется опрокидывание тела: он должен быть равен углу β . 3. Угол β найдем из геометрических соображений (треугольник АВС): Алгоритм решения задачи на скольжение тела Начало Нарисуйте векторы всех сил, действующих на тело (Fтяж, N, Fтр) Проведите оси координат (ось х удобно направить вдоль наклонной плоскости, ось у – перпендикулярно ей) Запишите второй закон Ньютона в проекциях на оси координат (поскольку тело не движется, его ускорение равно нулю) По определению силы трения откуда выражаем коэффициент трения в зависимости от угла наклона Конец Алгоритм решения задачи на скольжение тела Fтяж x= Fтяж sinα Fтяж y= Fтяж cosα N Fтр Fтр ≤ Fтяж x Fтяж x Fтр = μ N N= Fтяж y α х α Fтяж Fтяж y Fтяж x ≥ μ Fтяж y Fтяж sinα ≥ μ Fтяж cosα tg α ≥ μ Центр тяжести Центром тяжести тела называют геометрическую точку, через которую проходит сила тяжести тела при любом его положении в пространстве. Понятие о центре тяжести было впервые изучено примерно 2200 лет назад греческим геометром Архимедом, величайшим математиком древности. С тех пор это понятие стало одним из важнейших в механике, а также позволило сравнительно просто решать некоторые геометрические задачи. Методы определения центров тяжести Метод симметрии. При определении центров тяжести широко используется симметрия тел. Для однородного тела, имеющего плоскость симметрии, центр тяжести находится в плоскости симметрии. Для однородного тела, имеющего ось или центр симметрии, центр тяжести находится соответственно на оси симметрии или в центре симметрии. Центр тяжести тела произвольной формы Квадрат Центр тяжести тела произвольной формы Прямоугольник Центр тяжести тела произвольной формы Круг Центр тяжести тела произвольной формы Треугольник Методы определения центров тяжести Метод разбиения на части. Некоторые тела сложной формы можно разбить на части, центры тяжести которых известны. В таких случаях центры тяжести сложных фигур вычисляются по общим формулам, определяющим центр тяжести, только вместо элементарных частиц тела берутся его конечные части, на которые оно разбито. Центр тяжести тела произвольной формы Экспериментальный метод Центр тяжести тела произвольной формы Экспериментальный метод Центр тяжести тела произвольной формы Расчетный метод xцт 3m F1 m l F2 Задача на определение центра масс двойной звездной системы Самая яркая звезда северного полушария неба – Сириус из созвездия Большого Пса Задача на определение центра масс двойной звездной системы На самом деле это не одна звезда, а две, вращающиеся вокруг общего центра масс: Сириус А – белая звезда главной последовательности (спектральный класс А1),– и Сириус B – белый карлик. Задача на определение центра масс двойной звездной системы Масса Сириуса А 214% от массы Солнца, масса Сириуса B составляет 98% от массы Солнца, расстояние между ними 19,8 а.е. Определить, где находится центр масс этой звездной системы. Задача на определение центра масс двойной звездной системы Ответ: центр масс двойной звезды Сириус находится примерно на трети расстояния между ними ближе к Сириусу А. Методы определения центров тяжести Метод отрицательных масс. Fтяж2 xцт Fтяж1 Методы определения центров тяжести Метод отрицательных масс. Fтяж2 xцт Fтяж1 Ответ: центр тяжести фигуры находится на расстоянии R/6 от центра большого круга. Прочитайте текст и ответьте на вопросы Зачем центр тяжести располагают как можно ниже? Что заставляет плавающее тело поворачиваться, если центр тяжести не находится над точкой опоры? Какая сила опрокидывает корабль в шторм, если грузы сместились? Где должна располагаться точка приложения подъемной силы самолета, чтобы он был устойчивым? Какая энергия минимальна у устойчивого тела? Домашнее задание учебник «Физика-10» Мякишев Г.Я., Буховцев Б.Б., Сотский Н.Н., §54-56, упр.10 №3, 5, 7. 1. Придумать и решить задачу на нахождение центра тяжести сложной фигуры; 2. Найти центр тяжести системы тел; 3. Придумать эксперимент по определению центра тяжести объемного тела произвольной формы (картофелины); 4. Сделать воздушного змея и привязать к нему бечевку так, чтобы он хорошо слушался управления. Почему нелегко ходить по канату? Потому, что площадь опоры резко уменьшается. Ходить по канату нелегко, и не даром награждают аплодисментами искусного канатоходца. Однако иногда зрители впадают в ошибку и признают за вершину мастерства хитрые трюки, облегчающие задачу. Артист берёт сильно изогнутое коромысло с двумя вёдрами воды; вёдра оказываются на уровне каната. С серьёзным лицом, при замолкшем оркестре, артист совершает переход по канату. Как усложнён трюк, думает неопытный зритель. На самом же деле артист облегчил свою задачу, понизив центр тяжести. Равновесие тела, имеющего площадь опоры для равновесия необходимо, чтобы вертикальная линия, проведенная через центр тяжести тела, проходила внутри контура, образованного точками опоры (или внутри плоскости, на которую опирается тело). Это правило распространяется и на равновесие подъемных кранов. Подъемные краны для тяжелых грузов устанавливают на платформах, снабженных противовесом. Благодаря противовесу, когда кран поднимает тяжелый груз, общий центр тяжести крана, груза и противовеса не выступает за четырехугольник, ограниченный точками опоры колес на рельсах. Как лучше всего класть книги, если Вы хотите составить из них стопку, причем так, чтобы наклон был как можно больше? До новых встреч!

Слайд 2

Условия равновесия.

I условие равновесия: Тело находится в равновесии, если геометрическая сумма внешних сил, приложенных к телу, равна нулю. ∑F=0. II условие равновесия: Сумма моментов сил, действующих по часовой стрелке, должна равняться сумме моментов сил, действующих против часовой стрелки. ∑ Mпо час.=∑Mпротив час. М= F l, где М – момент силы, F - сила, l – плечо силы – кратчайшее расстояние от точки опоры до линии действия силы.

Слайд 3

Условие равновесия рычага.

F1l1 = F2 l2 F1 F2 M1 = M2 O l2 l1

Слайд 4

Центр тяжести тела.

Центр тяжести тела- это точка, через которую проходит равнодействующая всех параллельных сил тяжести, действующих на отдельные элементы тела. Найти центр тяжести данных фигур.

Слайд 5

ВИДЫ РАВНОВЕСИЯ Устойчивое Неустойчивое Безразличное

Слайд 6

Если на тело, имеющее опору, действуют уравновешивающие силы, то тело находится в положении равновесия.

Слайд 7

При отклонении тела от положения равновесия нарушается и равновесие сил. Если тело под действием равнодействующей силы возвращается в исходное положение, то это - устойчивое равновесие. Если же тело под действием равнодействующей силы, ещё сильнее отклоняется от положения равновесия, то это - неустойчивое равновесие.

Слайд 8

Возможен случай, когда при любом положении тела, равновесие сил сохраняется. Это состояние называется безразличным равновесием.

Слайд 9

Вывод:

Равновесие устойчиво, если при малом отклонении от положения равновесия есть сила, стремящаяся вернуть его в это положение. Устойчиво такое положение, в котором его потенциальная энергия минимальна.

Слайд 10

Слайд 11

Если центр тяжести находится выше точки опоры, то в этом случае осуществить равновесие сил практически невозможно. При малейшем отклонении карандаша от вертикального положения, его центр тяжести понижается и карандаш падает.

Слайд 12

В случае если центр тяжести расположен ниже точки опоры, равновесие тела или системы тел –устойчивое. При отклонении тела, центр тяжести повышается, и тело возвращается в исходное состояние.

Слайд 13

Равновесие тела, имеющего точку опоры ниже центра тяжести, неустойчиво. Но равновесие может восстанавливаться путём смещения точки опоры тела в сторону смещения центра тяжести.

Слайд 14

Хождение на ходулях (две точки опоры или линия опоры) осуществляется путём непрерывного смещения центра тяжести относительно линии, соединяющей точки опоры(АВ).

Слайд 15

По положению центра тяжести можно судить о виде равновесия. Например езда эквилибриста по канату на велосипеде с противовесом является примером устойчивого равновесия.

Слайд 16

Слайд 17

Вывод:

Для устойчивости тела, находящегося на одной точке или линии опоры необходимо, чтобы центр тяжести находился ниже точки (линии) опоры.

Слайд 18

Слайд 19

Под площадью опоры понимают площадь соприкосновения тела с опорой или площадь, ограниченную возможными осями, относительно которых может происходить опрокидывание (поворот) тела под действием внешних сил.

Слайд 20

Fт Fт Если при отклонении тела, имеющего площадь опоры, происходит повышение центра тяжести, то равновесие будетустойчивым. Приустойчивом равновесиивертикальная прямая, проходящая через центр тяжести, всегда будет проходить через площадь опоры.

Слайд 21

Fт Fт Fт Fт Fт Два тела, у которых одинаковы вес и площадь опоры, но разная высота, имеют разный предельный угол наклона. Если этот угол превысить, то тела опрокидываются. A = Fтh

Слайд 22

Fт Fт Fт Fт Fт A = Fт h При более низком положении центра тяжести необходимо затратить большую работу для опрокидывания тела. Следовательно работа по опрокидыванию может служить мерой его устойчивости.

Слайд 23

Fт Fт Fт Fт Fт Неустойчивое равновесие Устойчивое равновесие

Слайд 24

Чем ниже центр тяжести корабля, тем больше его устойчивость.

Раздел механики, в котором изучается
равновесие абсолютно твердых тел,
называется статикой.
Равновесие тела – это состояние покоя
или равномерного и прямолинейного
движения тела.
Абсолютно твердое тело – это тело, у
которого деформации, возникающие
под действием приложенных к нему
сил, пренебрежимо малы.
2

Первое условие равновесия
твердого тела: твердое тело
находится в равновесии,
если геометрическая сумма
внешних сил, приложенных
к нему, равна нулю.

Второе условие равновесия
твердого тела: твердое тело
находится в равновесии, если
алгебраическая сумма моментов
внешних сил, действующих на
него относительно любой оси,
равна нулю.
М1+М2+М3+…=0

Центр тяжести тела- это точка
приложения
равнодействующей силы
тяжести.

Виды равновесия

Устойчивое
Неустойчивое
Безразличное
6

Условия устойчивости равновесия

1. Тела находятся в состоянии
устойчивого равновесия, если
при малейшем отклонении от
положения равновесия
возникает сила или момент
силы, возвращающие тело в
положение равновесия.
7

2.Тела находятся в состоянии
неустойчивого равновесия, если
при малейшем отклонении от
положения равновесия
возникает сила или момент
силы, удаляющие тело от
положения равновесия.

3. Тела находятся в
состоянии безразличного
равновесия, если при
малейшем отклонении от
положения равновесия не
возникает ни сила, ни
момент силы, изменяющие
положение тела.

Виды равновесия
d

N
О

N
О



N d
О
устойчивое
неустойчивое
безразличное
10

Под площадью опоры понимают площадь соприкосновения тела с
опорой или площадь, ограниченную возможными осями,
относительно которых может происходить опрокидывание (
поворот) тела под действием внешних сил.

Равновесие тел на опорах







Тело, имеющее площадь опоры, будет
находиться в равновесии до тех пор, пока
линия действия силы тяжести будет

12



Если при отклонении тела, имеющего площадь опоры,
происходит повышение центра тяжести, то равновесие будет
устойчивым. При устойчивом равновесии вертикальная
прямая, проходящая через центр тяжести, всегда будет
проходить через площадь опоры.

A = FFт т h




Два тела, у которых одинаковы вес и площадь опоры, но
разная высота, имеют разный предельный угол наклона. Если
этот угол превысить, то тела опрокидываются.

A = Fт Fтh




При более низком положении центра тяжести необходимо
затратить большую работу для опрокидывания тела.
Следовательно работа по опрокидыванию может служить мерой
его устойчивости.

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Условия равновесия тел. Виды равновесия.

2 Раздел механики, в котором изучается равновесие абсолютно твердых тел, называется статикой. Равновесие тела – это состояние покоя или равномерного и прямолинейного движения тела. Абсолютно твердое тело – это тело, у которого деформации, возникающие под действием приложенных к нему сил, пренебрежимо малы.

Первое условие равновесия твердого тела: твердое тело находится в равновесии, если геометрическая сумма внешних сил, приложенных к нему, равна нулю.

Второе условие равновесия твердого тела: твердое тело находится в равновесии, если алгебраическая сумма моментов внешних сил, действующих на него относительно любой оси, равна нулю. М 1 +М 2 +М 3 +…=0

Центр тяжести тела- это точка приложения равнодействующей силы тяжести. Найти центр тяжести данных фигур.

6 Виды равновесия Устойчивое Безразличное Неустойчивое

7 Условия устойчивости равновесия 1. Тела находятся в состоянии устойчивого равновесия, если при малейшем отклонении от положения равновесия возникает сила или момент силы, возвращающие тело в положение равновесия.

2.Тела находятся в состоянии неустойчивого равновесия, если при малейшем отклонении от положения равновесия возникает сила или момент силы, удаляющие тело от положения равновесия.

3. Тела находятся в состоянии безразличного равновесия, если при малейшем отклонении от положения равновесия не возникает ни сила, ни момент силы, изменяющие положение тела.

10 О устойчивое N d Виды равновесия неустойчивое безразличное F т F т N О О F т F т N d F т

Под площадью опоры понимают площадь соприкосновения тела с опорой или площадь, ограниченную возможными осями, относительно которых может происходить опрокидывание (поворот) тела под действием внешних сил.

12 Равновесие тел на опорах Тело, имеющее площадь опоры, будет находиться в равновесии до тех пор, пока линия действия силы тяжести будет проходить через площадь опоры. F т F т F т F т ℓ ℓ

F т F т Если при отклонении тела, имеющего площадь опоры, происходит повышение центра тяжести, то равновесие будет устойчивым. При устойчивом равновесии вертикальная прямая, проходящая через центр тяжести, всегда будет проходить через площадь опоры.

F т F т F т F т F т Два тела, у которых одинаковы вес и площадь опоры, но разная высота, имеют разный предельный угол наклона. Если этот угол превысить, то тела опрокидываются. A = F т h

F т F т F т F т F т A = F т h При более низком положении центра тяжести необходимо затратить большую работу для опрокидывания тела. Следовательно работа по опрокидыванию может служить мерой его устойчивости.

16 Равновесие тел на опорах

17 Устойчивость транспорта