Добычи нефти и газа отчет по практике. Отчет о практике специальности разработка и эксплуатация нефтегазовых месторождений. Геолого-физическая характеристика объектов

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ

РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

ГОУВПО «УДМУРТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»
НЕФТЯНОЙ ФАКУЛЬТЕТ

Кафедра «Разработка и эксплуатация нефтяных и газовых месторождений»

по второй производственной практике
Содержание
1. Введение…………………………………………………………………… .3

2. Характеристика месторождения……………………………………………4

3. Объекты разработки и их характеристика…………………………………5

4. Коллекторские свойства продуктивных пластов…………………………11

5. Физические свойства пластовой жидкости (нефти, газа, воды)…………12

6. Показатели разработки залежи (продуктивного пласта)…………………17

7. Схема установки скважинного штангового насоса (УСШН)…………....18

8. Скважинные штанговые насосы, их элементы……………………………19

9. Резьбовые соединения насосно-компрессорных труб и

насосных штанг……………………………………………………………...22

10. Схема установки электроцентробежного насоса (УЭЦН)………………25

11. Технологический режим работы УСШН при постоянной

12. Технологический режим работы УСШН при периодической

откачке жидкости…......................................................................................27

13. Технологический режим работы УЭЦН………………………………….28

14. Приборы для исследования работы скважинных насосов……………....29

15. Результаты исследования работы УСШН………………………………..37

16. Конструкция газопесочных якорей……………………………………….38

17. Устройства для борьбы с отложениями парафина в

подземном оборудовании………………………………………………….39

18. Схема групповой замерной установки……………………………………40

19. Схема ДНС………………………………………………………………….41

20. Автоматизация работы установок скважинных насосов………………...42

21. Функциональные обязанности оператора по добыче нефти и газа …….43

22. Обеспечение требований по охране труда при обслуживании

добывающих скважин……………………………………………………...44

23. Отчетная документация в бригаде по добыче нефти…………………….47

24. Структура нефтегазодобывающего предприятия………………………...49

25. Требования по охране окружающей среды при добыче нефти………….50

26. Технико-экономические показатели деятельности НГДУ………………51

Список используемой литературы…………………………………………...53

1. ВВЕДЕНИЕ

Я проходил практику в ОАО «Удмуртнефть» НГДУ «Воткинск» на Мишкинском месторождении в бригаде по добыче нефти и газа. Находился на должности оператора по добыче нефти и газа 4 разряда.

Меня закрепили за оператором д/н 5 разряда, под чьим руководством я проходил практику. За время практики я прошел инструктажи по т/б и по электробезопасности, ходил на обходы, где наблюдал за работой СК и ГЗУ, работал на ЭВМ, где составил электронную версию различных схем.

У меня остались хорошие впечатления от практики. Во-первых, мастер следил за тем, чтобы я получил как можно больше информации об обязанностях оператора по добыче нефти и газа: давал указания закрепленному за мной оператору, после 3-х недель практики провел экзамен по полученным мной знаниям. Во-вторых, желание самих операторов рассказывать о своей работе.

Почти каждый день находился на различных работах. Я не разочаровался в выбранной мной профессии и рад, что учусь именно на этой специальности.

^ 2. ХАРАКТЕРИСТИКА МЕСТОРОЖДЕНИЯ

Мишкинское месторождение нефти открыто в 1966 г. и расположено на границе Воткинского и Шарканского районов севернее города Воткинска.

Площадь месторождения расположена в бассейне реки Кама и занимает водоразделы рек Вотка и Сива. Абсолютные отметки рельефа изменяются от 140 – 180 м на юге, до 180 – 250 м на севере. Площадь Мишкинского месторождения на 70% занята хвойными лесами, остальная часть занята сельскохозяйственными угодьями.

Климат района умеренно-континентальный, с продолжительной зимой. Среднегодовая температура +2С, морозы в январе – феврале иногда достигают -40С. Средняя глубина промерзания грунта 1,2 м, толщина снежного покрова 60 – 80 см.

Водозабор для целей ППД расположен на реке Сива. Источник энергоснабжения – подстанция 220/110/35/6 кВ «Сива». Подготовка нефти осуществляется на Мишкинском ЦКПН, расположенном на территории месторождения.

Мишкинская структура осложнена двумя куполами: западным - Воткинским и восточным - Черепановским.
^ 3. ОБЪЕКТЫ РАЗРАБОТКИ И ИХ ХАРАКТЕРИСТИКА

На Мишкинском месторождении нефтепроявления зарегистрированы в породах турнейского яруса и яснополянского надгоризонта (пласты Тл-0, Тл-I, Тл-II, Бб-I, Бб-II, Бб-III), нижнего карбона, в башкирском ярусе и верейском горизонте (пласты B-II, B-III) московского яруса среднего карбона.

Нефтегазоносность разреза изучалась по керну, образцам бокового грунтоноса, анализом материалов промыслово-геофизических исследований, газового каротажа и результатам испытания скважин на приток.

Турнейский ярус

В турнейских отложениях обнаружено три залежи нефти, приуроченные трём структурам: Западному и Восточному куполам Воткинского и Черепановского поднятия. Промышленно-нефтеносным является пласт пористо-кавернозных известняков в кровле черепетского горизонта мощностью до 36 м. Наиболее высокая часть залежи нефти встречена на Воткинском поднятии, в скважине № 180 на отметке 1334 м. Залежь небольшого размера обнаружена в районе 184 скважины с наивысшей отметкой 1357 м.

Отмечается наклон поверхности ВНК (от скв.№ 189 к скв.№ 183) Западно-Воткинского купола в пределах 2 – 2,5 м. Поэтому ВНК принят на отметке 1356 – 1354 м. Высота залежи нефти на Западно-Воткинском куполе 32 м, размеры её около 8x5 км.

На Восточно-Воткинском куполе среднее положение ВНК условно принимается на отметке 1358 м. Высота залежи на этом куполе в районе скв.№ 184 около 5 м, размеры её 3x1,5 км.

На Черепановском поднятии ВНК условно принимается на отметке 1370 м. Высота залежи нефти этого поднятия 4,5 м, размеры её около 4,5x2 км. Наличие плотных прослоев прослеживаемых на большой площади и опробование прикупольных скважин 211, 190, 191 доказывают слоисто-массивное строение земли.

Нефтепроявления Кизиловского горизонта встречены в его нижней части в пласте тонкопористых известняков. Результаты опробования указывают на плохие коллекторские свойства продуктивного пласта кизиловского горизонта.

ВНК кизиловской залежи условно принимаем на отметке 1330,4 – 1330 м.


Яснополянский надгоризонт

В яснополянском надгоризонте нефтепроявления приурочены к пластам пористых песчаников и алевролитов тульского и бобриковского горизонтов.

В бобриковском горизонте прослеживаются три пористых пласта. Промышленный приток нефти из пласта Бб-III получен в скважине № 211 и нефть с водой из скважины № 190.

Пласт Бб-II прослежен во всех скважинах, вскрывший нижний карбон и только в скважине № 191 замещён непроницаемыми породами.

Мощность пласта Бб-II изменяется от 0 до 2 м, а Бб-I от 0,8 до 2,5 м. Из пласта Бб-I промышленные притоки нефти получены в скважине № 189 совместно с другими пластами.

В тульском горизонте промышленная нефтеносность установлена в трёх пластах Тл-0, Тл-I, Тл-II. В яснополянском надгоризонте залежи нефти приурочены к структурам: Западно- и Восточно-Воткинскому куполам и Черепетскому поднятию. Наиболее незначительные мощности непроницаемых прослоев, разделяющих нефтеносные пласты яснополянского надгоризонта, а часто соединения проницаемых пластов друг с другом и литологическая их изменчивость позволяют предполагать о слоисто-пластовом типе залежей с единым ВНК для всех пластов Воткинского поднятия и отдельно для пластов Черепановского.

ВНК Черепановского поднятия для тульских пластов Тл-I, Тл-II, Тл-0 принимаем по подошве пласта Тл-II, давшей безводную нефть в скважине № 187 на отметке 1327,5 м.

Башкирский ярус

Нефтепроявления в отложениях башкирского яруса встречены во всех скважинах, вскрывших залежь нефти и охарактеризованных керном. Причём нефтепроявления размещаются в верхней, более плотной части разреза. Мощность эффективных прослоев колеблется в широких пределах от 0,4 до 12,2 м. В некоторых скважинах при опробовании притоков не получено или получены после солянокислотной обработки забоев. Значительные колебания величин притоков позволяют предполагать о сложном строении коллектора как по размеру, так и по площади. Наличие значительных дебитов вероятно указывает на наличие крупной кавернозности или трещиноватости в коллекторе. Наиболее высокая часть нефти Воткинского поднятия встречена в скважине № 211 на отметке 1006,6 м. Высота залежи около 38 метров, размеры залежи в пределах 16x8 км. ВНК условно принимается на отметке 1044 м.

Залежь нефти Черепановского поднятия изучена недостаточно. Она отделена от залежи Воткинского поднятия зоной ухудшения коллекторских свойств карбонатных пород. ВНК Черепановского поднятия принят на отметке 1044 м.

Верейский горизонт

В верейском горизонте прослеживаются в основном два нефтяных пласта, разделённых пластами аргиллитов и глинистых известняков. Мощность эффективных нефтенасыщенных известняков В-III колеблется от 0,6 до 6,8 м (скв.№ 201). Наиболее низкая отметка с которой получена безводная нефть 1042,8 метров (скв.№ 214). Наиболее высокая отметка залежи нефти пласта В-III – 990 м. ВНК принят на отметке 1042 м. Высота залежи в пределах принятого ВНК – 1042 метров составляет около 52 м. Размеры её в пределах внешнего контура около 25x12 км. Мощность эффективной части пласта колеблется от 1,2 до 6,4 м.

Наиболее высокая часть залежи пласта B-II вскрыта в скв.№ 211. ВНК принят на отметке 1040 м. Высота залежи в пределах принятого ВНК – 104 м и равна около 50 м. Размеры залежи в пределах внешнего контура нефтеносности около 25x12 км. Залежи нефти пластов В-II и В-III пластового типа.

Эффективная часть пласта B-I прослеживается не во всех скважинах. Результаты опробования указывают на низкую проницаемость пласта, а сложное расположение пористых разностей на площади месторождения осложняют оценку возможной нефтеперспективы пласта В-I.

^ 4. КОЛЛЕКТОРСКИЕ СВОЙСТВА ПРОДУКТИВНЫХ ПЛАСТОВ
Турнейский ярус

Турнейский ярус представлен карбонатными породами – известняками черепетского и кизиловского горизонтов. В скважинах выделяется от 1 (скв.№ 212) до 29 (скв.№ 187) пористых прослоев. Мощность выделяемых пористых разностей изменяется от 0,2 до 25,2 м. Суммарная мощность коллекторов черепетского горизонта в изученной части колеблется от 10,8 (скв.№ 207) до 39,2м (скв.№ 193). Почти во всех скважинах в кровле турнейского яруса выделяются прослои, как правило, это одиночный пласт мощностью около 2 м, но в некоторых скважинах (195, 196) появляется большее количество тонких пористых прослоев, число которых достигает 8. Общая мощность кизеловского коллектора возрастает в этом случае до 6,8 м.
Яснополянский надгоризонт

Отложения яснополянского надгоризонта представлены чередованием песчаников, алевролитов и глин бобриковского и тульского горизонтов. В составе бобриковского горизонта выделяются пласты песчаников Бб-II и Бб-I, а в составе тульского горизонта Тл-0, Тл-I, Тл-II. Эти пласты прослеживаются по всей площади Мишкинского месторождения. Общая мощность коллекторов бобриковского и тульского горизонтов колеблется от 7,4 м (скв.№ 188) до 24,8 м (скв.№ 199).
Башкирский ярус

Представлен чередованием плотных и пористо-проницаемых известняков. Известняки не глинистые. Приведённый относительный параметр Jnj изменяется от 0,88 в плотных прослоях до 0,12 – 0,14 в высокопористых разностях. Такой характер изменения Jnj свидетельствует о значительной кавернозности известняков. Количество пористых пропластков в скважинах по площади меняется от 5 (скв.№ 255) до 33 (скв.№ 189). Мощность выделяемых пористых разностей колеблется в пределах от 0,2 до 21,0 м. Суммарная мощность коллекторов башкирского яруса колеблется от 6,8 м (скв.205) до 45,5 м (скв.№201).
Верейский горизонт

Верейские отложения представлены чередованием алевролитов и карбонатных пород. Продуктивный пласт приурочен к карбонатным отложениям пористым и проницаемым. Выделяется два пласта В-III и B-II.

Суммарная мощность коллекторов верейского горизонта меняется от 4,0 (скв.№ 198) до 16,0 м (скв.№ 201). Мощность отдельного проницаемого прослоя меняется по площади от 0,4 до 6,4 м.
Сводные данные о коллекторских свойствах продуктивных пластов


Показатели

Верейский горизонт

Башкирский ярус

Яснополянский горизонт

Турнейский ярус

Пористость, %

20,0

18,0

14,0

16,0

Проницаемость, мкм 2

0,2

0,18

0,215

0,19

Нефтенасыщенность, %

82

82

84

88

^ 5. ФИЗИЧЕСКИЕ СВОЙСТВА ПЛАСТОВОЙ ЖИДКОСТИ

(НЕФТЬ, ГАЗ, ВОДА)
НЕФТЬ
Верейский горизонт

Из анализа глубинных проб следует, что нефти верейского горизонта тяжёлые, высоковязкие, величина плотности нефти в пластовых условиях находится в пределах 0,8717 – 0,8874 г/см 3 и в среднем составляет величину 0,8798 г/см 3 . Вязкость нефти в пластовых условиях колеблется в пределах 12,65 – 26,4 СП и в расчётах принималась 18,4 СП.

Среднее значение давления насыщения принято равным 89,9 атм. Нефти верейского горизонта слабо насыщены газом, газовый фактор составляет величину 18,8 м 3 /т.

По результатам анализа поверхностных проб нефти установлено: плотность нефти составляет 0,8963 г/см 3 ; в нефтяных пробах верейского горизонта содержится 3,07% серы, количество селикогелевых смол колеблется в пределах 13,8 - 21% и составляет в среднем 15,6%. Содержание асфальтенов находится в пределах 1,7 - 8,5% (среднее значение 4,6%), а содержание парафина 2,64 - 4,8% (среднее 3,6%).
Башкирский ярус

Данные анализа показывают, что нефть башкирского яруса легче, чем нефти других пластов Мишкинского месторождения, плотность нефти в пластовых условиях составляет 0,8641 г/см 3 . Вязкость нефти ниже, чем по верейскому горизонту и определена в 10,3 сп. Давление насыщения по башкирскому ярусу следует принять равным 107 атм. Газовый фактор по пласту равен 24,7 м 3 /т. Результаты анализа показывают, что среднее значение плотности нефти составляет 0,8920 г/см 3 . Содержание серы в нефти башкирского яруса варьирует от 22,4 до 3,63% и в среднем равно 13,01%. Количество селикогелевых смол колеблется от 11,6% до 18,7% и в среднем составляет 14,47%. Содержание асфальтенов находится в пределах 3,6 - 6,4% (в среднем 4,51%), а содержание парафина 2,7 - 4,8% (среднее 3,97%).
Яснополянский надгоризонт

Нефть тульского горизонта тяжёлая, удельного веса 0,9 г/см 3 , высоковязкая 34,2 сп. Газовый фактор составляет 12,2 м 3 /т, давление насыщения нефти газом 101,5 атм., что обусловлено высоким содержанием азота в газе до 63,8 объёмных процентов.

Поверхностные пробы нефти яснополянского надгоризонта были отобраны из 8 скважин. Плотность нефти по результатам анализа поверхностных проб составляет величину 0,9045 г/см 3 . Содержание серы  3,35%, содержание асфальтенов 5,5%, содержание парафина 4,51%.
Турнейский ярус

Вязкость нефти в пластовых условиях составила 73,2 сп. Плотность нефти 0,9139 г/см 3 . Газовый фактор 7,0 м 3 /т. объёмный коэффициент 1,01. Поверхностные пробы нефти турнейского яруса были отобраны из 8 скважин. Средняя плотность нефти составляет 0,9224 г/см 3 . Увеличенное содержание селикогелевых смол 17,4 - 36,6% (среднее 22,6%). Содержание асфальтенов и парафина составляет в среднем 4,39% и 3,47% соответственно.
^ ПОПУТНЫЙ ГАЗ

В составе попутного газа содержится повышенное количество азота. По турнейскому ярусу среднее значение его составляет 93,54%, по яснополянскому надгоризонту - 67,2%, по башкирскому ярусу - 44,4%, по верейскому горизонту - 37,7%. Такое содержание азота, а также низкие газовые факторы дают возможности использовать попутный газ как топливо, только на нужды промышленных предприятий.

По содержанию гелия в контурном газе яснополянского (0,042%) надгоризонта и черепетского яруса (0,071%) он представляет промышленный интерес, но ввиду низких газовых факторов, т.е. малой добычи гелия, рентабельность добычи его ставится под сомнение. Содержание гелия в попутном газе верейского горизонта и башкирского яруса соответственно равно 0,0265% и 0,006%.
^ ПЛАСТОВАЯ ВОДА
Верейский горизонт

Водообильность пластов верхней части верейского горизонта практически не изучена. Пластовые рассолы имеют плотность 1,181 г/см 3 , первую солёность – 70, содержат В – 781 мг/л, J – 14 мг/л и В 2 О 2 – 69,4 мг/л. В составе водо-растворенного газа резко преобладает азот – 81 %, метан – 13 %, этан – 3,0 %, более тяжёлые- 0,3%.
Башкирский ярус

Воды башкирских отложений имеют близкий ионно-солевой состав и несколько меньшую минерализацию и метаморфизацию, чем воды выше и нижележащих комплексов. Минерализация вод башкирских отложений не превышает 250-260 мг/л., Cl – Na/Mg не превышает 3,7; SO 4 /Cl не превышает 0,28; содержание мг/л брома 587 – 606; J ÷ 10,6 – 12,7; B 2 O 3 – 28-39; калия – 1100; стронция – 400; лития – 4,0.
Яснополянского надгоризонт

Для них характерна высокая минерализация, метаморфизация, отсутствие асфальтенов, высокие содержания брома и йода, не превышают 50 мг/л. Незначительные содержания сульфатов служит коррелятивом для отличия вод яснополянского комплекса от вод выше и нижележащих комплексов.

Средняя газонасыщенность пластовых вод яснополянских отложений 0,32 – 0,33 г/л. Состав газа азотный, содержание углеводородов около 3 – 3,5 %, аргона – 0,466 %, гелия – 0,069 %. Газ контактного дегазирования состоит из азота 63,8 %, метана 7,1 %, этана 7,9 %, пропана 12,1 %.
Турнейского ярус

Минерализация вод турнейского яруса равна 279,2 г/л; S – 68; SO 4 /Cl – 100-0,32; В – 728 мг/л; J – 13 мг/л; В 2 О 3 – 169 мг/л. Вода отложений турнейского яруса резко отличается от вод яснополянских отложений, что говорит об изолированности водоносных пластов горизонта.

Воды турнейского яруса сильно минерализованы. Для них характерны высокие содержания кальция 19 %, эквивалентный коэффициент Cl-Na/Mg выше 3; SO 4 /Cl – 100-0,12*0,25. Содержание брома 552-706 мг/л; йода 11-14 мг/л; NH 4 79-89 мг/л; В 2 О 3 39-84 мг/л; калия 1100 мг/л; стронция 4300 мг/л;
Физико-химические свойства нефти в пластовых условиях


Показатели

Верейский горизонт

Башкирский ярус

Тульский горизонт

Турнейский ярус

Пластовое давление, МПа

12,0

10,0

12,9

14,0

Плотность нефти, г/см 3

0,8798

0,8920

0,9

0,9139

Давление насыщения, кг/см 2

89,9

107,0

101,5

96,5

Вязкость, СПЗ

18,4

10,3

34,2

73,2

Газовый фактор, м 3 /т

18,8

24,7

12,2

7,0

Коэффициент сжимаемости

9,1

8,0

5,3

6,0

Объёмный коэффициент

1,04

1,05

1,009

1,01

Сера %

Селикагелевые смолы %

Асфальтены %

Парафины %


3,07

13,01

3,35

5,7

Физико-химические свойства газа


Показатели

Верейский горизонт

Башкирский ярус

Тульский горизонт

Турнейский ярус

Плотность газа, г/л

1,1

1,168

1,253

1,194

Содержание компонентов в %

CO 2 + H 2 S

1,5

1,1

0,3

1,15

N

41,23

37,65

63,8

86,60

CH 4

14,0

8,0

7,0

0,83

C 2 H 6

14,1

12,9

7,9

2,83

C 3 H 8

17,4

18,1

12,1

1,28

C 4 H 10

2,9

5,2

2,5

1,44

C 5 H 12

1,85

3,0

0,9

0,87

Физико-химические свойства пластовых вод


Солевой состав

Общая минерализация мг/л

Плотность, г/см3

Вязкость, СПЗ

Na+Ka

Md

Ca

Fe

Cl

SO 4

HCO 3

Воды Верейского горизонта

50406,8

2879,2

15839,5

113600,0

738,2

134,2

183714,5

Воды Башкирского яруса

75281,829

3721,0

16432,8

127,1

156010,8

111,10

24,40

251709,0

Воды тульского горизонта

79135,7

4355,4

201690

170400

нет

24,4

274075

Воды турнейского яруса

65867,1

4349,3

15960,0

142000,0

160,0

35,4

228294

^ 6. ПОКАЗАТЕЛИ РАЗРАБОТКИ ЗАЛЕЖИ

(продуктивного пласта)


Показатели за 2003 г.

Верейский горизонт

Башкирский ярус

Тульский горизонт

Турнейский ярус

Всего или среднее значение

Добыча нефти с начала года, тыс. т.

334,623

81,919

129,351

394,812

940,705

Добыча нефти в сутки, т/сут

1089,7

212,2

358,2

1043,9

2704,0

% от извлекаемых запасов

28,1

35,0

59,4

40,3

36,3

Закачка воды, тыс.м 3

1507,318

673,697

832,214

303,171

3316,400

Добыча воды с начала года, тыс. т.

1430,993

618,051

1093,363

2030,673

5173,080

Обводненость (по весу), %

74,5

86,5

87,5

82,0

81,4

Средний газовый фактор, м 3 /т

18,4

24,7

12,2

10,0

14,8

Федеральное агентство по образованию

Государственное образовательное учреждение высшего профессионального

Образования

«УФИМСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ТЕХНИЧЕСКИЙ

УНИВЕРСИТЕТ»

Кафедра «Нефтегазопромыслового оборудования»

учебной практики

Студент группы МПз – 02 – 01 А.Я. Исламгулов

Руководитель практики от Р.Р. Сафиуллин

кафедры к.т.н. доцент

Общая характеристика предприятия

Нефтепромысловое производственное управление «Аксаковнефть» образовалось в 1955 году в связи с открытием скважины № 3 Шкаповского нефтяного месторождения пробуренной буровой бригадой мастера И.З. Пояркова 23 ноября (рисунок 1).

Рисунок 1 – Скважина № 3

С самого начала своей деятельности НПУ «Аксаковнефть» относилось к тресту «Башнефть» находящемуся в г. Уфе, который был переформирован в акционерную нефтяную компанию «Башнефть»,

На балансе НГДУ находится 15 месторождений. Извлекаемые остаточные запасы составляют на 1.01.2004 года 22,358 млн.т (без учета прироста запасов 2004г). При текущих объемах добычи нефти обеспеченность запасами 21 год. В настоящее время разведочное бурение ведется на 2 площадях: Афанасьевской и Лисовской.

Месторождения ООО НГДУ «Аксаковнефть» указаны на рисунке 2.

С начала разработки добыто 229937 т т нефти. План по добычи нефти 2004 г выполняется на 100,2 %, сверх плана добыто 2 тыс. тонн нефти.

Рисунок 2 – Обзорная карта месторождений

Введено в эксплуатацию 21 новых скважин, при планируемых 20. Добыто нефти из новых скважин 31768 т при плане 27000 т.дебит новых скважин 9,5 т/сут при плане 7,8 т/сут.

Введено в эксплуатацию 6 новых нагнетательных скважин при планируемых 6.

Из бездействия введена в эксплуатацию 26 скважин при плане 26.

Период обустройства скважин при нормативе 17 суток составил 7,7 суток.

Собрано 39754 тыс.м3 попутного газа, в том числе сверх плана 422 тыс м3. Уровень использования ресурсов попутного нефтяного газа 96,3% при плане 95,1%.

Основное внимание уделяется внедрению новой техники и прогрессивных технологий, повышению нефтеотдачи пластов и эффективности геолого-технических мероприятий (рисунок 3).

За счет новых технологий увеличения нефтеотдачи пластов добыто 348 т. За истекший период года проведен большой объем работ по выполнению геолого-технических мероприятий. Так при плане 467 выполнено 467 мероприятий. Эффективность составляет 113,8 тыс.т.

Удельная эффективность при плане 243,3 т/мер. составит 243,7 т/мер.

Рисунок 3 – Технология увеличения приемистости нагнетательной скважины по технологии с использованием колтюбинговой установки.

Одним из этапов реорганизации АНК «Башнефть» стало присоединение в июле прошлого года коллектива Шкаповского газоперерабатывающего производства к ООО НГДУ «Аксаковнефть». За 2004 г переработано 39 млн 208 тыс куб попутного нефтяного газа при плане 34 млн 712 тыс м 3 , перевыполнение составило 4496 тыс.м 3 или +13% к плану.

ООО НГДУ «Аксаковнефть» - предприятие с высокоразвитой техникой и технологией нефтедобычи и региональной инфраструктурой расположено в юго-западной части Республики Башкортостан по адресу п. Приютово, ул. Вокзальная 13. Это современное высокоразвитое предприятие – подразделение объединения «Башнефть» с передовой техникой и технологией добычи и подготовки нефти.

Основной целью является получение прибыли и удовлетворение общественных потребностей в товарах и услугах производимых им. Основными видами деятельности являются:

Добыча нефти и газа и их подготовка;

Обустройство, капитальный и подземный ремонт скважин:

Ремонт и строительство автодорог;

Оказание платных услуг населению;

Производство товаров народного потребления;

Устройство, эксплуатация и ремонт нефтепромысловых объектов и объектов социального назначения;

Транспортные услуги, услуги специальной техники;

Производство и реализация пара и воды;

Подготовка и повышение квалификации кадров;

Проведение единой с Компанией экономической, ценовой, технической и экологической политики;

Общество осуществляет свою деятельность на основе действующего законодательства Российской Федерации и республики Башкортостан, Устава, решений органов управления Общества и заключенных договоров.

Уставной капитал Компании, его движение отражается на балансе Управления ОАО АНК «Башнефть».

Описание работы

Основа экономического потенциала Охинского района – топливно-энергетический комплекс. Его базовое предприятие – нефтегазодобывающее управление «Оханефтегаз», входящее в структуру ОАО «НК «Роснефть» - Сахалинморнефтегаз».
История предприятия НГДУ «Оханефтегаз» началась с разработки месторождения Оха в 1923 году. С 1923 по 1928 годы Охинское месторождение разрабатывает Япония по концессионному договору. С 1928 по 1944 годы разведку и разработку месторождения осуществляли совместно трест «Сахалиннефть» (образованный в 1927 году) и японский концессионер

Введение. Общие сведения о предприятии
2
1.
Теоретическая часть
3

1.1. Структура предприятия
3


4

1.3. Классификация методов увеличения нефтеотдачи пласта
6

1.4. Системы заводнения и условия их применения
9

1.5. Исследование нагнетательных скважин
13

1.6. Подземный ремонт нагнетательных скважин, виды и причины ремонта
14
2.
Охрана труда при заводнении пластов
15
3.
Охрана окружающей среды при использовании для ППД сточных вод
16

Заключение. Как определить эффективность применения методов ППД
18

Список используемой литературы
19

Файлы: 1 файл

Федеральное агентство по образованию и науке РФ

Разработка и эксплуатация нефтяных и газовых месторождений

(наименование специальности)


(фамилия, имя, отчество студента)

Заочное отделение курс шестой.

шифр 130503 .

по квалификационной (стажировке) практике

на ______________________________ _____________________________

(наименование предприятия)

Руководитель практики от филиала

Руководитель практики от предприятия

____________________ ___________________________

(должность) (подпись) (и.о.ф.)

Решение комиссии от «______» ____________________2010г.

признать, что отчет

выполнен и защищен с оценкой «_____________________________ »

Члены комиссии

_____________________ ___________________________ ____________________

_____________________ ___________________________ ____________________

(должность) (подпись) (и.о.ф.)

Введение

Общие сведения о предприятии.

Основа экономического потенциала Охинского района – топливно-энергетический комплекс. Его базовое предприятие – нефтегазодобывающее управление «Оханефтегаз», входящее в структуру ОАО «НК «Роснефть» - Сахалинморнефтегаз».

История предприятия НГДУ «Оханефтегаз» началась с разработки месторождения Оха в 1923 году. С 1923 по 1928 годы Охинское месторождение разрабатывает Япония по концессионному договору. С 1928 по 1944 годы разведку и разработку месторождения осуществляли совместно трест «Сахалиннефть» (образованный в 1927 году) и японский концессионер.

В 1944 году договор с Японией был расторгнут, и с этого периода разработку Охинского месторождения продолжает объединение «Сахалиннефть», причем Охинский нефтепромысел входит в различные годы в состав различных подразделений:

1944-1955 годы – Охинский нефтепромысел (в разработке месторождения Центральная Оха);

1955-1958 годы – Охинский укрупненный нефтепромысел, входящий в состав Нефтепромыслового управления «Эхабинефть» (в разработке месторождения Центральная Оха, Северная Оха, Некрасовка, Южная Оха, Колендо – до 1965 года);

1968-1971 годы – Нефтепромысловое управление «Оханефть» (в разработке месторождения Центральная Оха, Южная Оха, Некрасовка);

1971-1979 годы – НГДУ «Колендонефть» (в разработке месторождения Центральная Оха, Северная Оха, Южная Оха);

1979-1981 годы – Базовое предприятие Производственного объединения «Саханефтегаздобыча», входящего в состав Всесоюзного промышленного объединения «Сахалинморнефтегаз» (в разработке месторождения Центральная Оха, Северная Оха, Южная Оха);

1981-1988 годы – НГДУ «Севенефтегаз» (в разработке те же месторождения). НГДУ «Оханефтегаз» ведет свою работу на 17 нефтяных и газовых месторождениях, расположенных в Охинском районе.

В 1988 году ПО «Оханефтегаздобыча» и ВПО «Сахалинморнефтегаз» преобразуется в ПО «Сахалинморнефтегаз», а НГДУ «Севернефтегаз» - в НГДУ «Оханефтегаз», в состав которого опять входит месторождение Колендо. На старых нефтяных месторождениях, которые расположены на суше, начато внедрение технологии гидроразрывов пласта, что позволяет увеличивать дебиты скважин.

  1. Теоретическая часть
  • 1.1.Структура предприятия «Оханефтегаз»
  • 1.2. Краткая геологическая характеристика месторождения
  • Общие сведения о месторождении. Месторождение Тунгор открыто в 1958 году в 28 км южнее г.Охи. В орографическом отношении антиклинальная складка расположена на границах двух морфологических зон: восточной, приподнятой, выраженной в виде меридианальной гряды Восточно-Сахалинского хребта, и западной, представленной более пологими и пониженными формами рельефа. Максимальные абсолютные отметки в восточной части достигают 120 метров. Своду складки соответствует пониженная зона рельефа с абсолютными отметками, не превышающими 30-40 м.

    Гидрографческая сеть района развита слабо. Следует отметить наличие двух местных водосборных бассейнов – озера Тунгор и Одопту, имеющих тектоническую природу. Ряд мелких ручьев и речек протекает по площади. Долины их заболочены, расход воды неравномерен. Непосредственно вблизи месторождения расположен поселок Тунгор, который связан с городом Оха дорогой протяженностью 28 км.

    Климат района холодный, зима продолжительная, снежный покров ложится в ноябре и сохраняется до мая. Тайфуны зимой приносят метели, летом – обильные дожди. Ветер достигает 30м/сек. Лето короткое, дождливое. Среднегодовая температура – 2,5.

    Стратиграфия. Разрез отложений Тунгорского месторождения представлен терригенными песчано-глинистыми породами неогенового возраста. Вскрытый наиболее глубокими скважинами комплекс образований разделен (снизу-вверх) на дагинскую, окобыкайскую и нутовскую свиты.

    Дагинская свита. Максимальная вскрытая мощность в скважине № 25 – 1040м. Граница между дагинской и окобыкайской свитации проводиться по кровле XXI-го горизонта. Дагинские отложения подразделены на горизонты XXI – XXVI.

    Сложены они преимущественно песками и песчаниками светло-серыми, серыми, разнозернистыми, алевритоглинистыми породами.

    Аргиллиты темно-серые, до черных, трещиноватые, оскольчатые, сверху – песчано-алевристые, слюдистые, содержат обуглившиеся растительные остатки. Породы характеризуются повышенным содержанием кремнезима.

    Окобыкайская свита. Граница между отложениями Нутовской и Окобыкайской свит условно проведена на подошве 3-его пласта. Мощность свиты достигает 1400м. Обломочные породы представлены песками, глинами и их промежуточными и сцементированными разностями. Верхняя половина разреза свиты характеризуется устойчивостью осадконакопления, появляющейся при анализе мощностей. Повсеместная прерывистость пластов III – XII, резкие литолого-фациальные замещения затрудняют локальную корреляцию разреза отдельных скважин, предопределяют условность проводимого контакта нутовских и окобыкайских отложений.

    Пески и песчаники серые, светло-серые, мелкозернистые, глинисто-алевритовые с галькой и гравием. Алевриты и алевролиты светло- и темно-серые, глинисто-песчаные. Глины и аргиллиты темно-серые, песчанистые, алевритистые и трещиноватые. Глинисто-песчаный комплекс нижне-окобыкайской толщи включает в себя основные нефтяные и газовые залежи.

    Нутовская свита. Повсеместно распределена по площади, в своде складки обнажаются средненутовские породы. Общая мощность превышает 1000м. Если в нижней части разреза можно проследить отдельные песчаные пласты (III, II, I, М), то выше вскрывается сплошной песчаный комплекс с маломощными глинистыми пропластками. Песчаные породы серые, светло-серые, рыхлые, мелко-зернистые и разнозернистые с рассеянной галькой и гравием. Глины темно-серые, песчано-алевритовые, слюидистые с включениями обуглившихся растительных остатков.

    Тектоника. Тунгорская складка входит в состав Эхабинской антиклинальной зоны, расположенной в районе северо-восточной крайней части острова.

    В пределах антиклинальной зоны выделено девять антиклинальных структур, группирующихся в две антиклинальные ветви – Охинскую и Восточно-Эхабинскую.

    Тунгорская антиклиналь расположена на нижнем окончании Восточно-Эхабинской зоны и по ряду особенностей строения отличается от других складок. От соседних структур – Восточно-Эхабинской на востоке и Эхабинской, примыкающей с севера она отличается небольшой погруженностью, меньшей контрастностью, отсутствием разрывных нарушений. По плиоценовым отложениям, развитым на поверхности, складка представляет собой брахиантиклиналь меридианального простирания.

    По кровле XX горизонта складка простирается в меридиональном направлении, крылья ее почти симметричны. Углы падения пород на западном крыле изменяются в пределах 8-9 градусов, на восточном – более крутом, достигают 12-14. Погружение пород в южном направлении пологое, под углом 3-4, на северной переклинале отмечается флексуообразное сгущение изогипс и более крутое погружение шарнира (угол падения 6 -7).

    Нефтеносность. В 1958 году скважинной первооткрывательницей установлена промышленная нефтеносность XX горизонта. В 1961 году открыта нефтяная залежь XX горизонта при испытании скважины № 28. К настоящему времени на месторождении Тунгор доказана продуктивность трех нефтяных горизонтов (XXI, XX и XX) и десяти газовых. В разрезе месторождения Тунгор наблюдается широкий диапазон продуктивности и соблюдение вертикальной зональности в распределении залежей: вверх по разрезу нефтяные залежи сменяются газоконденсатными, далее чисто газовыми. Морфология природных резервуаров месторождения Тунгор вильной формы, соответственно ловушки залежей нефти и газа будут относится к пластовым сводовым и большинство из них частично литологически экранированные.

    1.3. Классификация методов увеличения нефтеотдачи пласта

    Применение методов поддержания пластовых давлений при разработке залежей нефти (законтурное и внутриконтурное заводнение, закачка в повышенные части пласта газа или воздуха) позволяет наиболее рационально использовать естественную пластовую энергию и восполнять ее, значительно сокращать сроки разработки залежей за счет более интенсивных темпов отбора нефти. И тем не менее баланс остаточных запасов на месторождениях, находящихся в завершающей стадии разработки, остается весьма высоким, составляя в отдельных случаях 50-70%.

    В настоящее время известно и внедряется большое число методов повышения нефтеотдачи пластов. Они различаются по методу воздействия на продуктивные пласты, характеру взаимодействия между нагнетательным в пласт рабочим агентом и насыщающей пласт жидкостью, видом вводимой в пласт энергии. Все методы повышения нефтеотдачи можно разделить на гидродинамические, физико-химические и тепловые.

    Гидродинамические методы повышения нефтеотдачи пластов.

    При применении этих методов не изменяется система расстановки добывающих и нагнетательных скважин и не используется дополнительные источники энергии, вводимые в пласт с поверхности для вытеснения остаточной нефти. Гидродинамические методы повышения нефтеотдачи функционируют внутри осуществляемой системы разработки, чаще при заводнении нефтяных пластов, и направлены на дальнейшую интенсификацию естественных процессов нефтеизвлечения. К гидродинамическим методам относят циклическое заводнение, метод переменных фильтрационных потоков и форсированный отбор жидкости.

    Циклическое заводнение. Метод основан на периодическом изменении режима работы залежи путем прекращения и возобновления закачки воды и отбора, за счет чего более полно используются капиллярные и гидродинамические силы.

    Это способствует внедрению воды в зоны пласта, ранее не охваченные воздействием. Циклическое заводнение эффективно на месторождениях где применяется обычное заводнение, особенно в гидрофильных коллекторах, которые капиллярно лучше удерживают внедрившуюся в них воду. В неоднородных пластах эффективность циклического заводнения выше, чем обычного заводнения. Это обусловлено тем, что в условиях заводнения неоднородного пласта остаточная нефтенасыщенность участков пласта с худшими коллекторскими свойствами существенно выше, чем основной заводненной части пласта. При повышении давления упругие силы пласта и жидкости способствуют внедрению воды в участки пласта с худшими коллекторскими свойствами, капиллярные же силы удерживают внедрившуюся в пласт воду при последующем снижении пластового давления.

    Метод перемены направления фильтрационных потоков. В процессе проведения заводнения нефтяных пластов, особенно неоднородных, по традиционным схемам в них постепенно формируются поле давлений и характер фильтрационных потоков, при которых отдельные участки пласта оказываются не охваченными активным процессом вытеснения нефти водой. Для вовлечения в разработку застойных, не охваченных заводнением зон пласта необходимо изменить общую гидродинамическую обстановку в нем, что достигается перераспределением отборов и закачки воды по скважинам. В результате изменения отборов (закачки) меняются направленность и величины градиентов давления, за счет чего на участки, ранее не охваченные заводнением, воздействуют более высокие градиенты давления, и нефть из них вытесняется в заводненную, проточную часть пластов, чем и достигается увеличение нефтеотдачи. При реализации метода наряду с изменением отбора и закачки практикуется периодическая остановка отдельных скважин или групп добывающих и нагнетательных скважин.

    Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

    Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

    Размещено на http://allbest.ru/

    Министерство образования и науки РЕСПУБЛИКИ ТАТАРСТАН

    АЛЬМЕТЬЕВСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ ИНСТИТУТ

    Кафедра «Разработка и эксплуатация нефтяных и газовых месторождений»

    ОТЧЁТ

    По учебной практике, проходившей в НГДУ “Лениногорскнефть”, учебный полигон, НГДУ «Елховнефть»

    Место прохождения практики г. Альметьевск

    Руководитель практики от кафедры РиЭНГМ

    г. Альметьевск 2012

    С одержание

    Введение

    1. Критерии и принципы выделения эксплуатационных объектов

    2. Системы разработки нефтяных месторождений

    3. Размещение скважин по площади залежи

    4. Геолого-физическая характеристика объектов

    5. Бурение скважин

    6. Система ППД

    7. Эксплуатация нефтяных и нагнетательных скважин

    8. Исследование скважин

    9. Методы увеличения производительности скважин

    10. Текущий и капитальный ремонт скважин

    11. Сбор и подготовка нефти, газа и воды

    12. Промышленная безопасность на предприятиях нефтегазового комплекса

    Список литературы

    Введение

    Трест по добыче нефти и газа «Альметьевнефть» образован 1 октября 1952 года на базе нефтепромысла «Миннибаево» треста «Бугульманефть» ПО «Татнефть». В 1954 году он был преобразован в нефтепромысловое управление, в 1970 году -- в НГДУ «Альметьевнефть". «НГДУ Альметьевнефть - современное промышленное предприятие с шестью комплексно -автоматизированными нефтепромыслами, мощной развитой высокомеханизированной ремонтной базой, подразделениями вспомогательного и подсобного производства, широкой сетью социальных, культурно-бытовых, торговых объектов и производств.

    Сегодня в состав управления входят:

    6 цехов по добыче нефти и газа;

    2 цеха комплексной подготовки и перекачки нефти;

    цех по приему и сдаче нефти;

    цех поддержания пластового давления;

    10 цехов вспомогательного производства;

    жилищно-коммунальное хозяйство.

    Управление «Альметьевнефть» располагает спортивно-оздоровительным цехом, в его ведении находятся оздоровительный лагерь «Юность», база рыбака «Кама».

    НГДУ «Альметьевнефть» разрабатывает центральную и северо-западную части Ромашкинского месторождения.

    Организация производственных процессов в НГДУ «Альметьевнефть»:

    ОППД" отдел поддержания пластового давления и повышения нефтеотдачи пласта Главная задача-разработка и организация выполнения мероприятий, направленных на выполнение плана закачки технологической жидкости в пласт, повышение эффективности использования нагнетательного фонда скважин и другого оборудования системы ПДД контроль за своевременным выполнением мероприятий, направленных на повышение нефтеотдачи пластов, контроль за выполнением природоохранных мер при эксплуатации объектов ППД.

    ЦИТС обеспечение выполнения суточных и месячных планов добычи нефти и газа, организация и контроль выполнения суточных заданий, ежедневный анализ производственной ситуации, круглосуточная организация и контроль работ всех объектив, осуществление координации с вспомогательным производством.

    ТОДНиРП- технологический отдел по добыче нефти и развитию производства, Главная задача: разработка перспективных, годовых, квартальных и месячных планов добычи нефти, ввода скважин в эксплуатацию, подземных и капитальных ремонтов скважин и скважин на механизированную добычу нефти.

    ОKPC - обеспечение качественного ремонта скважин от написания планов работ до окончания ремонт, разработка организационно-технических мероприятий, направленных на повышение эффективности ремонта скважин, осуществление контроля за соблюдением технологического процесса при капитальном ремонте скважин, внедрение новых технологий, материалов.

    ООСС- отдел организации строительства скважин осуществляет контроль над своевременным выполнением работ по строительству скважин при условии не превышения лимита затрат.

    CПСН служба по приему - сдаче нефти. Главной задачей по приему сдачи нефти, является организация приема нефти от подразделений ОАО «Татнефть» и сдачи ее на объединенных узлах учета в систему магистральных нефтепроводов АК «Транснефть».

    СПБиОТ - служба промышленной безопасности и охраны труда (Основной задачей является обеспечение промышленной безопасности и охраны труда в подразделениях управления, организация и координация работы в этом направлении. Технический отдел - осуществляет руководство работами по внедрению и эксплуатации на объектах НГДУ средств новой техники, передовой технологии.

    ОМТСиКО отдел материального - технического снабжения и комплектации оборудования. Осуществляет корпоративного управления процессом материального - технического обеспечения производством.

    Отдел главного энергетика - осуществляет техническое и методическое руководство энергетической службой управления, разрабатывает и контролирует внедрение мероприятий по рациональной эксплуатации энергетического и теплотехнического оборудования.

    Отдел главного механика. Главной задачей является осуществление технического и методического руководства механоремонтной службы управления, обеспечения рациональной эксплуатации оборудования.

    Отдел главного технолога. Главной задачей является организация выполнения планов по подготовке и перекачке нефти, выработке широкой фракции, мероприятий, направленных на улучшение качества и снижения потерь подготовленной нефти.

    ТОРНиГМ - технологический отдел по разработке нефтяных и газовых месторождений. Главной задачей отдела является внедрение, утверждение технологических схем и проектов разработки месторождений.

    Геологический отдел. Главной задачей геологического отдела является детальное изучение нефтяных и газовых месторождений в период разбуривания их эксплуатационными и нагнетательными скважинами.

    МГС - маркшейдерско-геодезическая служба. Главной задачей МГС является своевременное и качественное проведение предусмотренного нормативными требованиями комплекса маркшейдерских работ, достаточных для обеспечения безопасного ведения работ, связанных с пользованием недрами, наиболее полного извлечения из недр запасов полезных ископаемых, обеспечения технологического цикла горных, строительно-монтажных работ, а гак же для прогнозирования опасных ситуаций при ведении таких работ.

    ОВП - отдел вспомогательного производства. Главной задачей отдела является изучение социологических проблем организации труда, быта и отдыха работников, разработка социальных программ, организация их выполнения и контроль, за ходом их реализации.

    СОИ - служба обработки информации. Главной задачей является внедрение и обеспечение эффективного функционирования информационной системы НГДУ, сбор первичной информации, своевременная выдача потребителям результатов вычислений.

    ПООМ - производственный отдел по обустройству месторождений. Главной задачей является разработка мероприятий по своевременному вводу в эксплуатацию строящихся объектов, текущих и перспективных планов капитального строительства.

    ОЭР и П - отдел экономических расчетов и прогнозирования. Главной задачей является организация и совершенствование расчетов и обоснований по прогнозированию и оперативному анализу финансовой деятельности управления, расчеты и обоснования финансового плана по самостоятельным структурным подразделениям.

    ООТиЗП - отдел организации труда заработной платы. Главной задачей является создание условий для прогрессивной и эффективной трудовой деятельности за счет разработки и внедрения передовых форм организации труда.

    ОКС - отдел капитального строительства. Главной задачей отдела является составление текущих и перспективных планов капитального строительства городских объектов жилищно-гражданского назначения, финансируемых ОАО «Татнефть» и другими источниками финансирования, контроль за ходом строительства и финансирования сооружаемых объектов, обеспечение своевременного ввода в эксплуатацию законченных строительством объектов.

    Отдел регистрации имущества - Главной задачей отдела является представление НГДУ «Альметьевнефть» по вопросам Государственной регистрации прав на имущество и при заключении сделок (аренды, купле-продаже) с имуществом, а также учет, контроль и анализ эффективности использования имущества, принадлежащего НГДУ «Альметьевнефть» и разработка предложений по его улучшению.

    ПСО - проектно - сметный отдел. Главной задачей является своевременная выдача проектно - сметой документации «Заказчику» согласно мероприятиям, разработанным по своевременному вводу в эксплуатации. Строящихся объектов, текущих и перспективных планов строительства новых, реконструкции существующих объектов собственными силами.

    ЦДНГ - цеха по добыче нефти и газа. Главная задача - обеспечение разработки нефтяных и газовых месторождений.

    ЦППД - цех поддержания пластового давления. Главная задача - поддержание пластового давления на объектах разработки.

    ЦКППН - цех комплексной подготовки и перекачки нефти. Главная задача - прием нефти с ЦДНГ в резервуарные парки, сепарация нефти при товарных парках, выработка широкой фракции легких углеводородов, сдача подготовленной нефти

    ЦКПРС - цех капитального и подземного ремонта скважин. Основной задачей является своевременная и качественная замена вышедших из строя электроцентробежных установок и подземного оборудования.

    ПРЦГНО - прокатно-ремонтный цех глубинно-насосного оборудования. Основной задачей является осуществление ремонта ревизии опрессовки.

    ЦПСН - цех по приему-сдаче нефти. Главной задачей является организационно-техническое обеспечение приемо-сдаточных операций нефти, обеспечение достоверности учета и контроля качества нефти.

    ПРЦЭиЭ - прокатно-ремонтный цех электрооборудования и электроснабжения.

    Основная задача - обеспечение надежной, экономичной, безопасной работы электроустановок, проведение ремонта электрооборудования во всех подразделениях НГДУ.

    ТЭЦ - теплоэнергетический цех. Главной задачей цеха является бесперебойное, рациональное обеспечение тепло энергией объектов НГДУ, ОАО «Татнефть» с минимальными затратами и предотвращением потерь энергоносителя.

    ПРЦЭО - прокатно-ремонтный цех эксплуатационного оборудования. Главной задачей цеха является обеспечение надежной и бесперебойной работы нефтепромыслового оборудования.

    ЦАП - цех автоматизации производства. Главной задачей является техническое обслуживание и обеспечение надежной работы КИП.

    АУТТ-1 - Альметьевске управление технологического транспорта. Главной задачей АУТТ-1 является качественное и своевременное транспортное обслуживание и выполнение работ специальной техникой для предприятий, организаций и структурных подразделений НГДУ в целях обеспечения выполнения плановых заданий по добыче нефти и газа, строительству нефтяных и газовых скважин.

    ЦАКЗО - цех по антикоррозийной защите оборудования. Главной задачей цеха является увеличение срока службы нефтепромыслового оборудования с помощью применения технологий по защите от коррозии.

    СОЦ - Спортивно-оздоровительный цех НГДУ «АН». Главной задачей цеха является обеспечение условий для укрепления здоровья и разностороннего физического развития работников НГДУ «АН» и членов их семей.

    База отдыха «Юность». Главной задачей является обеспечение отдыха работников НГДУ и их семей.

    Центральный склад. В задачи склада входит: прием, обработка, хранение и отпуск материальных ценностей и оборудования.

    УКК - Учебный курсовой комбинат. Главной задачей является: подготовка, переподготовка, повышение квалификации рабочих, обучение бригадиров и их резервов.

    1. Критерии и принципы выделения эксплуатационных объектов

    Разработка многопластовых месторождений, содержащих различные виды углеводородных флюидов (нефть, газ, газоконденсат и вода), является сложной оптимизационной задачей, от грамотного решения которой зависит, насколько эффективно и рационально будут эксплуатироваться недра. Определяющую роль при решении данного вопроса играет степень изученности месторождения, а именно - наличие достоверной информации относительно конфигурации залежей, о геолого-физических характеристиках продуктивных пластов, их природных режимах, физико-химических свойств и компонентного состава углеводородного сырья.

    Высокая степень изученности позволяет максимально снизить риск ошибки при выборе эксплуатационных объектов, сформировав наиболее рациональную схему их выделения. В то же время очевидно, что высокая степень изученности характерна для разбуренных месторождений: здесь решения относительно выделения эксплуатационных объектов уже сформированы, и возможна лишь их корректировка. Таким образом, наиболее актуален вопрос выделения объектов эксплуатации именно на начальном этапе разработки. Как правило, объем исходной информации для проектирования на данной стадии весьма ограничен. В этой связи выбор оптимального количества объектов является задачей неоднозначной. По мере появления новой информации их число может как значительно возрасти, так и существенно уменьшиться. Подобные изменения могут существенным образом отразиться как на технологической, так и на экономической эффективности проекта.

    В настоящее время в связи с улучшением технической оснащенности промыслов наблюдается тенденция учета большего числа параметров и критериев при объединении нескольких пластов в один эксплуатационный объект. Основной критерий правильности выделения эксплуатационных объектов--рациональность показателей разработки.

    Поэтому в последнее время делаются попытки при выделении эксплуатационных объектов учесть количественные критерии, связанные с геологическими особенностями строения различных горизонтов.

    В качестве критерия выбора можно использовать погрешность предсказания функции.

    Критерием для выбора расчетных режимов работы скважин являются минимальное забойное давление, необходимое для фонтанирования скважин; давление насыщения пластовой нефти газом; минимальное давление, необходимое для нормальной работы центробежного или плунжерного глубинного насоса; предельный максимально допустимый дебит скважины (или предельный удельный дебит с одного метра толщины пласта).

    Не всегда все эти критерии могут быть приемлемыми.

    Напротив, для пород очень слабых и неустойчивых могут оказаться излишними все предельные критерии по забойным давлениям, так как их нельзя достичь в результате ограничения дебита.

    Однако это основное требование не может служить единственным критерием рациональности разработки.

    Очевидно, существуют определенные соотношения между этими величинами, могущие служить критериями, определяющими условия целесообразности и экономической рентабельности бурения дополнительных скважин.

    Одним из возможных критериев целесообразности бурения резервных скважин может служить себестоимость дополнительной добычи нефти, которая не должна превышать определенный предел -- предел рентабельной себестоимости, зависящей от качества добываемой нефти, местоположения данной залежи и др.

    В качестве основного критерия, как и в случае непрерывного пласта, примем себестоимость нефти, дополнительно добываемой за счет резервных скважин. Критерий их применимости -- параметр Фурье Fo: где Як -- радиус контура питания или внешней границы пласта (характеризующий размеры пласта). В качестве критерия перехода с режима растворенного газа на смешанный режим вытеснения газированной нефти водой может служить равенство забойных давлений при постоянных дебитах или равенство дебитов при постоянных давлениях, взятых для /-го ряда из формул интерференции несжимаемой жидкости для одновременной работы рядов при сопоставлении их с соответствующими величинами, полученными при расчете работы этого ряда на режиме растворенного газа.

    Методика расчетов должна быть достаточно точной, для чего следует принять некоторые критерии.

    Таким критерием может служить, например, сравнение показателей, рассчитываемых по данной схеме и более точной (многомерной).

    Объективным критерием адекватности модели служит критерий согласия.

    Критерии эффективного применения методов

    Критерии применимости методов включают в себя в определенной степени технико-экономические показатели применения метода на основании обобщения ранее полученного опыта применения метода в различных геолого-физических условиях.

    Геолого-физические критерии применимости новых методов увеличения нефтеотдачи пластов определены на основании анализа многочисленных теоретических, лабораторных и промысловых исследований как отечественных, так и зарубежных авторов и приведены в табл.

    Отбор месторождений осуществляется путем анализа их по критериям применимости каждого из методов.

    На одном месторождении оказывается возможным рекомендовать два метода или более, а критерии применимости методов и дополнительные условия и ограничения не позволяют выбрать для месторождения один метод воздействия, делаются специальные технико-экономические оценки.

    Обоснование метода увеличения нефтеотдачи пластов при заводнении на основе критериев применимости методов.

    Обозначив долю воды в общем объеме внедрившейся жидкости и удерживаемой породой при обратном ее перетоке через коэффициент е, получим главный критерий эффективности циклического воздействия.

    Указанные данные определяют по результатам лабораторных исследований на физически подобных моделях пластов применительно к условиям конкретного объекта (с использованием реальных образцов породы, пластовой нефти и при соблюдении критериев подобия в процессе моделирования).

    2. Системы разработки нефтяных месторождений

    Нефтяные и нефтегазовые месторождения - это скопления углеводородов в земной коре, приуроченные к одной или нескольким локализованным геологическим структурам, т.е. структурам, находящимся вблизи одного и того же географического пункта. Залежью называется естественное локальное единичное скопление нефти в одном или нескольких сообщающихся между собой пластах-коллекторах, т. е. в горных породах, способных вмещать в себе и отдавать при разработке нефть.

    Залежи углеводородов, входящие в месторождения, обычно находятся в пластах или массивах горных пород, имеющих различное распространение под землей, часто -- различные геолого-физические свойства. Во многих случаях отдельные нефтегазоносные пласты разделены значительными толщами непроницаемых пород или находятся только на отдельных участках месторождения.

    Такие обособленные или отличающиеся по свойствам пласты разрабатывают различными группами скважин, иногда при этом используют различную технологию. Размер и многопластовость месторождений с емкостными свойствами коллекторов определяют в целом величину и плотность запасов нефти, а в сочетании с глубиной залегания обусловливают выбор системы разработки и способов добычи нефти.

    Системой разработки нефтяного месторождения следует называть совокупность взаимосвязанных инженерных решений, определяющих объекты разработки; последовательность и темп их разбуривания и обустройства; наличие воздействия на пласты с целью извлечения из них нефти и газа; число, соотношение и расположение нагнетательных и добывающих скважин; число резервных скважин, управление разработкой месторождения, охрану недр и окружающей среды. Построить систему разработки месторождения означает найти и осуществить указанную выше совокупность инженерных решений.

    Система разработки месторождений должна отвечать требованиям максимального извлечения нефти или газа из недр в кратчайший срок при минимальных затратах.

    Проектом разработки определяются число и система расположения эксплуатационных и нагнетательных скважин, уровень добычи нефти и газа, методы поддержания пластового давления и т. п.

    Разработка отдельных залежей нефти или газа производится посредством системы эксплуатационных и нагнетательных скважин обеспечивающих добычу нефти или газа из пласта. Комплекс всех мероприятий, обеспечивающих разработку залежи, определяет систему разработки.

    Основными элементами системы разработки залежей являются: способ воздействия на пласт, размещение эксплуатационных и нагнетательных скважин, темп и порядок разбуривания эксплуатационных и нагнетательных скважин.

    Важнейшими элементами системы разработки являются методы воздействия на пласт, так как в зависимости от них будут решаться остальные вопросы разработки залежи.

    Для повышения эффективности естественных режимов залежи и обеспечения наиболее рациональной разработки необходимо применять различные методы воздействия на пласт. Такими методами могут явиться различные виды заводнения, закачка газа в газовую шапку или в нефтяную часть пласта, солянокислотные обработки, гидроразрывы и ряд других мер, направленных на поддержание пластового давления и повышение продуктивности скважин.

    В настоящее время без поддержания пластового давления разрабатываются либо залежи, имеющие активный естественный режим, способный обеспечить поддержание давления в процессе всего периода разработки и получение высокого конечного коэффициента нефтеотдачи, либо небольшие по запасам месторождения, где организация работ по поддержанию давления экономически нецелесообразна.

    3. Размещение скважин по площади залежи

    Под размещением скважин понимают сетку размещения и расстояния между скважинами (плотность сетки), темп и порядок ввода скважин в работу. Системы разработки подразделяют на следующие: с размещением скважин по равномерной сетке и с размещением скважин по неравномерной сетке (преимущественно рядами).

    Системы разработки с размещением скважин по равномерной сетке различают: по форме сетки; по плотности сетки; по темпу ввода скважин в работу; по порядку ввода скважин в работу относительно друг друга и структурных элементов залежи. Сетки по форме бывают квадратными и треугольными (шестиугольными). При треугольной сетке на площади размещается скважин больше на 15,5 %, чем при квадратной в случае одинаковых расстояний между скважинами. Схема расположения точек заложения скважин на перспективной или нефтегазоносной площади и последовательность их бурения, обеспечивающие достоверное и эффективное решение геологоразведочных задач в конкретных геологических условиях.

    Основные системы размещения скважин:

    Треугольная

    Заложение каждой новой скважины в вершине треугольника, в двух других вершинах которого уже имеются пробуренные скважины.

    Кольцевая

    Размещение скважин последовательными рядами вокруг скважины-открывательницы на одинаковых гипсометрических отметках базисного продуктивного горизонта.

    Профильная

    Размещение скважин на разных гипсометрических отметках по профилю (линии), пересекающему структуру или площадь залежи в определенном направлении, с целью получения профильного геологического разреза.

    На практике в определенных условиях применяют комбинированные системы размещения скважин, состоящие из различных сочетаний основных систем или их модификаций (например, зигзаг-профильная система).

    Особенно часто сочетания систем размещения скважин используют при разведке месторождений, которые содержат залежи различного типа и размера и разведка которых ведется самостоятельными сетками скважин.

    При современной методике поисково-разведочных работ системы размещения скважин выбирают также на основе решений, получаемых при анализе соответствующих математических моделей промышленных скоплений нефти и газа.

    4. Геолого-физическая характеристика объектов

    Ромашкинское месторождение -- расположено в 70 км к западу от г. Альметьевск. Открыто в 1948, разрабатывается с 1952. Приурочено к Альметьевской вершине Татарского свода размером 65х75 км, присводовая часть осложнена многочисленными локальными поднятиями. Месторождение многопластовое. Основная промышленная нефтеносность связана с терригенными толщами среднего, верхнего девона и среднего карбона (бобриковский горизонт); меньшие по размерам залежи расположены в карбонатных коллекторах верхнего девона, нижнего и среднего карбона. Выявлено свыше 200 залежей нефти. Основная залежь высотой 50 м находится в пашийском горизонте. Коллекторы представлены кварцевыми песчаниками суммарной мощностью от нескольких до 50 м, средняя нефтенасыщенная мощность 10-15 м. Пористость песчаников 15-26%, проницаемость 40-2000 мД. Нефть нафтеново-парафинового состава, плотностью 796-820 кг/м 3 , содержание S 1,5-2,1%, парафина 2,6-5,4%. Состав попутного газа (%): CH 4 30-40, С 2 Н 6 +высшие 27-55. Залежь кыновского горизонта верхнего девона (мощность песчаных коллекторов до 9 м, средняя нефтенасыщенная мощность 3,2 м) гидродинамически связана с пашийской залежью. Остальные залежи в терригенных отложениях (нижний карбон) приурочены к песчано-алевролитовым коллекторам суммарной мощностью до 18 м. Режим залежей водонапорный и упруговодонапорный. Основные залежи разрабатываются с поддержанием пластового давления (внутриконтурное и законтурное заводнение), механизированным способом. Центр добычи -- Альметьевск.

    Миннибаевская площадь является одной из центральных площадей месторождения. Площадь начала вводиться в промышленную разработку в 1952г. Первые нагнетательные скважины Альметьевско - Миннибаевского разрезающего ряда переведены под закачку воды в 1954 г. Сегодня это одна из наиболее выработанных площадей Ромашкинского месторождения.

    Размещено на http://allbest.ru/

    Размещено на http://allbest.ru/

    Ромашкинское месторождение:

    площади: 1 - Березовская, 2 - Северо-Альметьевская, 3 - Альметьевская, 4 - Миннибаевская, 5 - Зай-Каратайская, 6 - Куакбашская, 7 - Ташлиярская, 8 - Чишминская, 9 - Алькеевская, 10 - Восточно-Судеевская, 11 - Абдрахмановская, 12 - Южно-Ромашкинская, 13 - Западно-Лениногорска, 14 - Павловская, 15 - Зеленогорская, 16 Восточно - Лениногорская, 17 - Азнакаевская, 18 - Холмовская, 19 Каракалинская, 20 - Южная, 21 - Сармановская;

    Ново-Елховское месторождение;

    Бавлинское месторождение

    а - границы месторождений;

    б - границы площадей.

    5. Б урение скважин

    Бурение скважин -- это процесс сооружения направленной цилиндрической горной выработки в земле, диаметр "D" которой ничтожно мал по сравнению с её длиной по стволу "H", без доступа человека на забой. Начало скважины на поверхности земли называют устьем, дно -- забоем, а стенки скважины образуют ее ствол.

    По способу воздействия на горные породы различают механическое и немеханическое бурение. При механическом бурении буровой инструмент непосредственно воздействует на горную породу, разрушая ее, а при немеханическом разрушение происходит без непосредственного контакта с породой источника воздействия на нее. Немеханические способы(гидравлический, термический, электрофизический) находятся в стадии разработки и для бурения нефтяных и газовых скважин в настоящее время не применяются.

    Механические способы бурения подразделяются на ударное и вращательное.

    При ударном бурении разрушение горных пород производится долотом 1, подвешенным на канате (рис. 3). Буровой инструмент включает также ударную штангу 2 и канатный замок 3. Он подвешивается на канате 4, который перекинут через блок 5, установленный на какой-либо мачте (условно не показана). Возвратно-поступательное движение бурового инструмента обеспечивает буровой станок 6.

    Размещено на http://allbest.ru/

    Размещено на http://allbest.ru/

    Рис. 3. Схема ударного бурения:

    1 - долото; 2 - ударная штанга; 3 - канатный замок;4 - канат; 5 - блок; 6 - буровой станок.

    По мере углубления скважины канат удлиняют. Цилиндричность скважины обеспечивается поворотом долота во время работы.

    Для очистки забоя от разрушенной породы буровой инструмент периодически извлекают из скважины, а в нее опускают желонку, похожую на длинное ведро с клапаном в дне. При погружении желонки в смесь из жидкости (пластовой или наливаемой сверху) и разбуренных частиц породы клапан открывается и желонка заполняется этой смесью. При подъеме желонки клапан закрывается и смесь извлекается наверх.

    По завершении очистки забоя в скважину вновь опускается буровой инструмент и бурение продолжается.

    Рис. 2. Классификация способов бурения скважин на нефть и газ

    Во избежание обрушения стенок скважины в нее спускают обсадную трубу, длину которой наращивают по мере углубления забоя.

    В настоящее время при бурении нефтяных и газовых скважин ударное бурение в нашей стране не применяют.

    Нефтяные и газовые скважины сооружаются методом вращательного бурения. При данном способе породы дробятся не ударами, а разрушаются вращающимся долотом, на которое действует осевая нагрузка. Крутящий момент передается на долото или с поверхности от вращателя (ротора) через колонну бурильных труб (роторное бурение) или от забойного двигателя (турбобура, электробура, винтового двигателя), установленного непосредственно над долотом. Турбобур - это гидравлическая турбина, приводимая во вращение с помощью нагнетаемой в скважину промывочной жидкости. Электробур представляет собой электродвигатель, защищенный от проникновения жидкости, питание к которому подается по кабелю с поверхности. Винтовой двигатель - это разновидность забойной гидравлической машины, в которой для преобразования энергии потока промывочной жидкости в механическую энергию вращательного движения использован винтовой механизм.

    По характеру разрушения горных пород на забое различают сплошное и колонковое бурение. При сплошном бурении разрушение пород производится по всей площади забоя. Колонковое бурение предусматривает разрушение пород только по кольцу с целью извлечения керна - цилиндрического образца горных пород на всей или на части длины скважины.

    6. Система ППД

    Поддержание пластового давления -- процесс естественного или искусственного сохранения давления в продуктивных пластах нефтяных залежей на начальной или запроектированной величине с целью достижения высоких темпов добычи нефти и увеличения степени её извлечения. Поддержание пластового давления при разработке нефтяной залежи могут осуществлять за счёт естественного активного водонапорного или упруговодонапорного режима, искусственного водонапорного режима, создаваемого в результате нагнетания воды в пласты-коллекторы при законтурном или приконтурном, а также при внутриконтурном заводнении. В зависимости от геологических условий и экономических показателей разработки выбирают тот или иной способ поддержания пластового давления или их комбинацию.

    Поддержание пластового давления способом внутриконтурного заводнения является наиболее эффективным и экономичным, особенно для больших по площади нефтяных залежей. Его создают путём блокового, ступенчатого осевого, барьерного площадного, очагового или избрательного способов заводнения. При поддержании пластового давления в нефтяной части залежи через нагнетательные скважины закачивают воду или водогазовую смесь без добавок или с различными добавками, способствующими улучшению её вытесняющих свойств. Если нефтяная залежь имеет ярко выраженный свод, то в него для поддержания пластового давления нагнетают газ или воздух, вследствие чего создаётся напор искусственной газовой шапки. При расчёте процессов нагнетания определяют схему размещения нагнетательных скважин, суммарный объём закачки, приёмистость нагнетательных скважин, их число и давление нагнетания. Подбирается такая схема расположения нагнетательных скважин, которая обеспечивает наиболее эффективную связь между зонами нагнетания и отбора и равномерное вытеснение нефти водой.

    При площадном заводнении в зависимости от геологического строения нефтяной залежи и стадии её разработки для поддержания пластового давления применяют рядное, 4-точечное, 7-точечное и другое расположение нагнетательных и добывающих скважин. В размещении скважин по правильной геометрической сетке могут допускаться отклонения, если площадное заводнение проводят дополнительно к ранее внедрённой системе заводнения с учётом её эффективности, геологического строения и состояния разработки пластов-коллекторов. Суммарный объём закачиваемого агента зависит от запроектированного отбора жидкости из залежи, от давления на линии нагнетания и большей частью от коллекторских и упругих свойств пластов. Число нагнетательных скважин при известном объёме закачки зависит от поглотительной способности каждой скважины при данной величине давления нагнетания. Поглотительная способность нагнетательных скважин определяется коэффициентом приёмистости, так же как производительность нефтяной скважины -- коэффициентом продуктивности. Максимальное давление нагнетания зависит от типа имеющегося насосного оборудования. Число нагнетательных скважин для каждой залежи нефти определяется отношением заданного объёма закачки воды в сутки к поглотительной способности одной скважины. Об эффективности процесса заводнения судят по увеличению текущей добычи нефти из действующих скважин. Применение поддержания пластового давления резко увеличило темпы отбора нефти, сократило сроки разработки нефтяных залежей, обеспечило высокие конечные коэффициенты нефтеотдачи.

    7. Эксплуатация нефтяных и нагнетательных скважин

    СШНУ -- комплекс оборудования для механизированной добычи жидкости через скважины с помощью штангового насоса, приводимого в действие станком-качалкой.

    Рис. 4. СШНУ:

    1 - станок-качалка; 2 - полированный шток; 3 - колонна штанг; 4 - обсадная колонна; 5 - насосно-компрессорные трубы; 6 - цилиндр насоса; 7 - плунжер насоса; 8 - нагнетательный клапан; 9 - всасывающий клапан.

    Штанговый насос (рис.4) опускается в скважину ниже уровня жидкости. Состоит из цилиндра, плунжера, соединённого со штангой, всасывающих и нагнетательных клапанов. Цилиндр невставного штангового насоса опускается на колонне насосно-компрессорных труб, а плунжер -- на колонне штанг внутри насосно-компрессорных труб; цилиндр вставного штангового насоса опускается вместе с плунжером на штангах и закрепляется на замковой опоре, установленной на конце насосно-компрессорных труб или на пакере; штанговый насос большого диаметра опускается целиком на колонне насосно-компрессорных труб и соединяется с колонной штанг через сцепное устройство. Существуют также: штанговые насосы с подвижным цилиндром и неподвижным плунжером, с двумя ступенями сжатия, с двумя цилиндрами и плунжерами, с камерой разрежения и др. Штанги соединяются в колонну с помощью муфт. Длина штанги 8-10 м, диаметр 12,7-28,6 мм. Используются также полые неметаллические штанги или непрерывные колонны штанг, наматываемые при подъёме на барабан. Длина колонны до 2500 м. При длине свыше 1000 м колонна штанг делается ступенчатой, с увеличивающимся кверху диаметром для уменьшения массы и достижения равнопрочности.

    Станок-качалка преобразует вращение вала двигателя в возвратно-поступательное движение, передаваемое колонне штанг через гибкую подвеску и полированный шток. Применяются в основном механические редукторно-кривошипные, балансирные и безбалансирные, а также башенные и гидравлические станки-качалки. Максимальная длина хода точки подвеса штанг 1-6 м, максимальная нагрузка 1-20 тс, частота ходов в минуту от 5 до 15. Используют электрический, реже газовые двигатели (на нефтяном газе от скважины) мощностью до 100 кВт. Станок-качалка преобразует вращение вала двигателя в возвратно-поступательное движение, передаваемое колонне штанг через гибкую (канатную, цепную) подвеску и полированный шток. Применяются в основном механические редукторно-кривошипные, балансирные и безбалансирные, а также башенные и гидравлические станки-качалки. Максимальная длина хода точки подвеса штанг 1-6 м (башенные до 12 м), максимальная нагрузка 1-20 тс, частота ходов в минуту от 5 до 15. Используют электрический, реже газовые двигатели мощностью до 100 кВт.

    Станция управления штанговой насосной установкой обеспечивает пуск, установку, защиту от перегрузок, а также периодическую работу. Дополнительное оборудование штанговой насосной установки: якорь для предотвращения перемещений нижнего конца насосно-компрессорных труб; хвостовик -- колонна насосно-компрессорных труб малого диаметра (25-40 мм) ниже насоса для выноса воды; газовые и песочные якори для защиты насоса от попадания свободного газа и абразивных механических примесей; штанговые протекторы (полимерные или с катками) для уменьшения износа труб и штанговых муфт в наклонных скважинах; скребки на штангах для удаления парафиновых отложений с насосно-компрессорных труб; динамограф, показывающий зависимость нагрузки от перемещения точки подвеса штанг, для технической диагностики узлов штанговой насосной установки.

    Продукция скважины (нефть, вода, рассол) подаётся на поверхность по насосно-компрессорным трубам, обсадной колонне либо по полым штангам. Производительность при постоянной откачке до 300 м 3 /сутки, при меньших дебитах применяется периодическая добыча нефти.

    Электроцентробежная насосная установка -- комплекс оборудования для механизированной добычи жидкости через скважины с помощью центробежного насоса, непосредственно соединённого с погружным электродвигателем. Используют при добыче нефти и воды, в том числе рассолов. Электроцентробежная насосная установка для нефтяных скважин (рис. 5) включает центробежный насос с 50-600 ступенями; асинхронный электродвигатель, заполненный специальным диэлектрическим маслом; протектор, предохраняющий полость электродвигателя от попадания пластовой среды; кабельную линию, соединяющую электродвигатель с трансформатором и станцией управления. Ступень центробежного насоса содержит направляющий аппарат с рабочим колесом (рис. 6).

    Рис. 5. Электроцентробежная насосная установка:

    1 - электродвигатель; 2 - протектор; 3 - центробежный насос; 4 - кабель; 5 - устьевая арматура; 6 - трансформатор; 7 - станция управления; 8 - датчик.

    Направляющие аппараты стянуты в цилиндрическом корпусе насоса, а рабочие колёса зафиксированы шпонкой на валу, подвешенном на осевой опоре и вращающемся в концевых и промежуточных радиальных опорах. Детали отливаются из специального чугуна, бронзы, коррозионно- и абразивостойких сплавов и полимерных материалов. Для уменьшения попадания в насос свободного газа перед ним устанавливается гравитационный или центробежный газосепаратор.

    Электродвигатель состоит из статора, содержащего цилиндрический корпус, с запрессованными пакетами электротехнической стали, в пазах которых размещена обмотка, и подвешенного на осевой опоре ротора с закреплёнными на валу стальными пакетами, где размещена короткозамкнутая обмотка типа "беличье колесо"; между пакетами расположены радиальные опоры.

    Протектор содержит уплотнение вала систему компенсации температурного расширения масла, в некоторых случаях гидравлический затвор с жидкостью большей плотности, чем скважинная среда и нейтральной по отношению к ней и маслу электродвигателя.

    Трехжильный бронированный плоский или круглый кабель большого сечения имеет герметичный ввод в электродвигатель и соединяет последний через трансформатор со станцией управления. Станция осуществляет управление, контроль и электрический защиту электроцентробежной насосной установки от короткого замыкания, перегрузки, срыва подачи напряжения, снижения сопротивления изоляции. Трансформатор преобразует напряжение сети в рабочее, имеет ступенчатую регулировку для подбора режима работы. Применяются также преобразователи частоты для бесступенчатой регулировки частоты вращения электроцентробежной насосной установки и датчики давления и температуры электродвигателя, передающие сигнал об отклонении этих параметров от безопасных значений по силовому кабелю или сигнальной жиле.

    Длина электроцентробежной насосной установки 25-30 м. При длине центробежного насоса и электродвигателя свыше 5-8 м (в зависимости от диаметра) они состоят из отдельных секций для удобства транспортировки и монтажа. Электроцентробежная насосная установка монтируется в вертикальном положении непосредственно в процессе спуска в скважину. Корпуса секций соединяют фланцами, валы -- шлицевыми муфтами. Установка опускается на заданную глубину на насосно-компрессорных трубах, подвешенных к устьевой арматуре с герметическим вводом кабельной линии в скважину. Кабельная линия крепится к насосно-компрессорным трубам снаружи поясами. При работе электроцентробежной насосной установки продукция подаётся на поверхность по насосно-компрессорным трубам. Реже применяют электроцентробежные насосные установки без насосно-компрессорных труб с пакером, подвеской на кабель-канате и подачей продукции по обсадной колонне. Производительность электроцентробежной насосной установки для нефтяной скважин от 15-20 до 1400-2000 м 3 /сутки, напор до 2500-3000 м, мощность электродвигателя до 500 кВт, напряжение до 2000 В, температура откачиваемой среды до 180°С, давление до 25 МПа.

    Электроцентробежная насосная установка для воды содержит заполненный водой электродвигатель и насос с 5-50 ступенями. Производительность его до 3000 м 3 /сутки, напор до 1500 м, мощность электродвигателя до 700 кВт, напряжение 3000 В, температура воды до 40°С.

    8. Исследование скважин

    Исследование скважин -- комплекс методов для определения основных параметров нефтегазоводоносных пластов и скважин с помощью глубинных приборов; передача информации осуществляется по глубинному каналу связи.

    Цель исследования -- получение данных для составления проектов, контроль за разработкой месторождений. Различают геофизические, гидродинамические, газогидродинамические методы, также дебитометрию, шумометрию и др. При гидродинамических исследованиях определяют параметры, характеризующие сравнительно большие участки исследуемых пластов-коллекторов, а также технологические характеристики скважин, уточняют геологическое строение пласта-коллектора, определяют гидродинамическую связь между пластами и скважинами и др.

    При помощи дебитометрии в работающих нагнетательных и добывающих скважинах выделяют интервалы притока флюидов к забоям скважин, определяют дебиты отдельных пропластков, проницаемость, пьезопроводность, контролируют состояние обсадной колонны, затрубного пространства скважин и др. При глубинных исследованиях применяются манометры, термометры, расходомеры, шумомеры, комплексные глубинные приборы для измерения давления, температуры, дебита, водосодержания флюида. При гидродинамических глубинных исследованиях используется автоматическая промысловая электронная лаборатория.

    9. Методы увеличения производительности скважин

    Дебиты газовых скважин при одинаковых диаметрах, режимах эксплуатации пласта, величине пластового давления можно увеличить снижением фильтрационного сопротивления при движении газа в призабойной зоне пласта. Это возможно за счет образования каналов, каверн и трещин в ней, уменьшения содержания твердых частиц и жидкостей в поровых каналах.

    Известны следующие методы воздействия на призабойную зону пласта.

    1) Физико-химические: солянокислотная обработка(СКО); термокислотная обработка(ТКО); обработка поверхностно-активными веществами (ПАВ); осушка призабойной зоны сухим обезвоженным газом;

    2) Механические: торпедирование; гидравлический разрыв пласта (ГРП); гидропескоструйная перфорация (ГПП); ядерный взрыв;

    3) Комбинированные: ГРП+СКО; ГПП+СКО.

    Выбор метода воздействия на призабойную зону скважин зависит от литологического и минералогического составов пород и цементирующего материала газоносных горных пород, давления и температуры газа и пород пласта, толщины продуктивного горизонта, неоднородности пласта вдоль разреза.

    Солянокислотная и термокислотная обработка призабойных зон скважин дают хорошие результаты в слабопроницаемых карбонатных породах (известняках, доломитах) и песчаниках с карбонатным цементирующим веществом. В песчаниках с глинистым цементирующим материалом эффективна обработка соляной и плавиковой кислотами (так называемой грязевой кислотой).

    Солянокислотная обработка основана на способности соляной кислоты растворять карбонатные породы.

    В зависимости от пластовых условий на практике применяют 8--15%-ную соляную кислоту. Техническая соляная кислота поставляется заводами концентрированной, На промысле ее разбавляют водой до нужной концентрации.

    Рис. 7. Схема проведения кислотной обработки.

    Для снижения коррозии металлического оборудования в процессе СКО используют вещества, называемые ингибиторами коррозии, в качестве которых применяют формалин (CH 2 O), уникол ПБ-5, И-1-А с уротропином, а также сульфонол, ДС-РАС, диссольван 4411, нейтрализованный черный контакт.

    Продукты взаимодействия кислоты с породой удаляются из пласта в процессе освоения скважины. Для облегчения этого процесса в кислоту добавляют интенсификаторы, снижающие поверхностное натяжение продуктов реакции - НЧК, спирты, препарат ДС и другие ПАВ.

    Порядок добавления различных реагентов в кислоту при подготовке ее к закачке в скважину следующий: вода -- ингибиторы -- стабилизаторы (уксусная и плавиковая кислоты) -- техническая соляная кислота -- хлористый барий -- интенсификатор.

    Кислота нагнетается в скважину в объеме от 0,5--0,7 до 3--4 м 3 на 1 м длины фильтра с помощью специальных агрегатов, например Азинмаш-30, смонтированных на автомашине КрАЗ-219, а также цементировочных агрегатов ЦА-300, ЦА-320М, 2АН-500. Время реакции кислоты с момента окончания закачки не должно превышать 6--8 ч. Результаты определяют по данным исследований скважин после обработки. Обработка считается успешной, если уменьшается коэффициент С, увеличивается дебит скважины при той же депрессии на пласт. Торпедирование, гидравлический разрыв пласта, гидропескоструйную перфорацию и ядерные взрывы, обычно применяют в пластах, сложенных крепкими, плотными породами, имеющими небольшие проницаемость, пористость, но высокое пластовое давление.

    Сущность гидравлического разрыва пласта -- создание на забое скважин высокого давления, которое превышало бы местное горное давление на величину, зависящую от прочностных свойств горных пород. При таком увеличении давления в пласте образуются трещины или расширяются ранее существовавшие, что приводит к значительному увеличению проницаемости пласта. Созданные трещины закрепляют крупнозернистым песком.

    Рис. 8. Схема проведения гидравлического разрыва пласта:

    1 - продуктивный пласт; 2 - НКТ; 3 - эксплуатационная колона; 4 - пакер

    Давление гидравлического разрыва, ориентация и размеры образующихся при этом трещин зависят от горного давления, т. е. давления вышележащих горных пород, характера и параметров естественной трещиноватости газоносных пород, а также величины пластового давления. В процессе гидравлического разрыва пласта должны быть созданы такие условия, при которых в пласте возникают и закрепляются трещины. Скорости нагнетания жидкости разрыва должны быть такими, чтобы закачиваемый объем превышал приемистость пласта, подвергающегося гидравлическому разрыву. Необходимая скорость закачки зависит от вязкости жидкости разрыва и параметров призабойной зоны. Из этого следует, что в низкопроницаемых породах гидравлический разрыв может быть при сравнительно малых скоростях закачки с использованием жидкостей небольшой вязкости. В высокопроницаемых породах необходимо применять жидкости разрыва большой вязкости или существенно повышать скорости нагнетания.

    нефтяной месторождение скважина производительность

    10. Текущий и капитальный ремонт скважин

    В процессе эксплуатации скважин фонтанным, компрессорным или насосным способом нарушается их работа, что выражается в постепенном или резком снижении дебита, иногда даже в полном прекращении подачи жидкости. Работы по восстановлению заданного технологического режима эксплуатации скважины связаны с подъемом подземного оборудования для его замены или ремонта, очисткой скважины от песчаной пробки желонкой или промывкой, с ликвидацией обрыва или отвинчивания насосных штанг и другими операциями.

    Все ремонтные работы в зависимости от их характера и сложности разделяют на текущий и капитальный ремонты скважин.

    К текущему ремонту относятся следующие работы:

    Планово-предупредительный ремонт.

    Ревизия подземного оборудования.

    Ликвидация неисправностей в подземной части оборудования.

    Смена скважинного насоса (ПЦЭН или ШСН).

    Смена способа эксплуатации, переход с ПЦЭН на ШСН или наоборот и пр.

    Очистка НКТ от парафина или солей.

    Замена обычных НКТ на трубы с покрытием (остеклованные трубы).

    Изменение глубины подвески насосной установки.

    Подъем скважинного оборудования перед сдачей скважины в консервацию.

    Специальный подземный ремонт в связи с исследованиями продуктивного горизонта.

    Некоторые виды аварийных ремонтов, такие как заклинивание плунжера, обрывы штанг, обрывы скребковой проволоки или электрокабеля.

    Перечисленные ремонтные работы, а также и ряд других выполняются бригадами подземного ремонта скважин, организуемыми в нефтедобывающем предприятии. К капитальному ремонту скважин относятся ремонтные работы, для выполнения которых приходится привлекать более сложную технику, вплоть до использования бурильных установок. К капитальному ремонту, в частности, относятся следующие работы:

    Ликвидация сложных аварий, связанных с обрывом штанг, труб, кабеля и образованием в скважине сальников.

    Исправление нарушений в обсадных колоннах.

    Изоляция пластовых вод.

    Работы по вскрытию пласта и освоению скважин в связи с переходом на другой горизонт.

    Забуривание второго ствола.

    Разбуривание плотных соляно-песчаных пробок на забое.

    Гидравлический разрыв пласта.

    Солянокислотные обработки скважин.

    Установка временных колонн - «летучек», намывка и установка фильтров, ликвидация прихватов труб, пакеров и смятии обсадных колонн.

    Операции по ликвидации скважин.

    При подземном ремонте глубоких скважин применяют эксплуатационные вышки и мачты, стационарные или передвижные, предназначенные для подвески талевой системы, поддержания на весу колонны труб или штанг при ремонтных работах, проводимых на скважине.

    Стационарные вышки и мачты используются крайне нерационально, т.к. ремонтные работы на каждой скважине проводятся всего лишь несколько дней в году, всё остальное время эти сооружения находятся в бездействии. Поэтому целесообразно использовать при подземном ремонте подъемники, несущие собственные мачты. Транспортной базой их служат тракторы и автомобили.

    Подъемник -- механическая лебедка, монтируемая на тракторе, автомашине или отдельной раме. В первом случае привод лебедки осуществляется от тягового двигателя трактора, автомашин, в остальных от самостоятельного двигателя внутреннего сгорания или электродвигателя.

    Агрегат -- в отличие от подъемника оснащен вышкой и механизмом для ее подъема и опускания.

    11. Сбор и подготовка нефти, газа и воды

    Сбор нефти и газа на промыслах -- подготовка нефти, газа и воды до такого качества, которое позволяет транспортировать их потребителям. Осуществляется посредством комплекса оборудования и трубопроводов, предназначенных для сбора продукции отдельных скважин и транспортировки их до центрального пункта подготовки нефти, газа и воды (ЦПС).

    Подобные документы

      Разработка нефтяных месторождений. Техника и технология добычи нефти. Фонтанная эксплуатация скважин, их подземный и капитальный ремонт. Сбор и подготовка нефти на промысле. Техника безопасности при выполнении работ по обслуживанию скважин и оборудования.

      отчет по практике , добавлен 23.10.2011

      Общие сведения о промысловом объекте. Географо-экономические условия и геологическое строение месторождения. Организация и производство буровых работ. Методы увеличения производительности скважин. Текущий и капитальный ремонт нефтяных и газовых скважин.

      отчет по практике , добавлен 22.10.2012

      Изучение технологических процессов бурения нефтяных и газовых скважин на примере НГДУ "Альметьевнефть". Геолого-физическая характеристика объектов, разработка нефтяных месторождений. Методы увеличения производительности скважин. Техника безопасности.

      отчет по практике , добавлен 20.03.2012

      Ликвидация нефте-газо-водопроявлений при бурении скважин. Методы вскрытия продуктивного пласта. Оборудование скважин, эксплуатируемых ЭЦН. Сбор, подготовка и транспортировка скважинной продукции. Этапы подготовки воды для заводнения нефтяных пластов.

      курсовая работа , добавлен 07.07.2015

      Краткая история развития нефтегазового дела. Понятие и назначение скважин. Геолого-промысловая характеристика продуктивных пластов. Основы разработки нефтяных и газовых месторождений и их эксплуатация. Рассмотрение методов повышения нефтеотдачи.

      отчет по практике , добавлен 23.09.2014

      Методы поиска и разведки нефтяных и газовых месторождений. Этапы поисково-разведочных работ. Классификация залежей нефти и газа. Проблемы при поисках и разведке нефти и газа, бурение скважин. Обоснование заложения оконтуривающих разведочных скважин.

      курсовая работа , добавлен 19.06.2011

      Физические свойства и месторождения нефти и газа. Этапы и виды геологических работ. Бурение нефтяных и газовых скважин и их эксплуатация. Виды пластовой энергии. Режимы разработки нефтяных и газовых залежей. Промысловый сбор и подготовка нефти и газа.

      реферат , добавлен 14.07.2011

      Понятие о нефтяной залежи, ее основные типы. Источники пластовой энергии. Пластовое давление. Приток жидкости к скважине. Условие существования режимов разработки нефтяных месторождений: водонапорного, упругого, газовой шапки, растворенного газа.

      презентация , добавлен 29.08.2015

      Общая характеристика месторождения, химические и физические свойства нефти. Условия, причины и типы фонтанирования. Особенности эксплуатации скважин глубинными насосами. Методы увеличения нефтеотдачи пластов. Технология и оборудование для бурения скважин.

      отчет по практике , добавлен 28.10.2011

      Первичный, вторичный и третичный способы разработки нефтяных и газовых месторождений, их сущность и характеристика. Скважина и ее виды. Наклонно-направленное (горизонтальное) бурение. Искусственное отклонение скважин. Бурение скважин на нефть и газ.